Group
Guide to the Secure Configuration of SUSE Linux Enterprise 12
Group contains 83 groups and 190 rules |
Group
System Settings
Group contains 46 groups and 122 rules |
[ref]
Contains rules that check correct system settings. |
Group
Installing and Maintaining Software
Group contains 7 groups and 11 rules |
[ref]
The following sections contain information on
security-relevant choices during the initial operating system
installation process and the setup of software
updates. |
Group
System and Software Integrity
Group contains 2 groups and 4 rules |
[ref]
System and software integrity can be gained by installing antivirus, increasing
system encryption strength with FIPS, verifying installed software, enabling SELinux,
installing an Intrusion Prevention System, etc. However, installing or enabling integrity
checking tools cannot prevent intrusions, but they can detect that an intrusion
may have occurred. Requirements for integrity checking may be highly dependent on
the environment in which the system will be used. Snapshot-based approaches such
as AIDE may induce considerable overhead in the presence of frequent software updates. |
Group
Software Integrity Checking
Group contains 1 group and 3 rules |
[ref]
Both the AIDE (Advanced Intrusion Detection Environment)
software and the RPM package management system provide
mechanisms for verifying the integrity of installed software.
AIDE uses snapshots of file metadata (such as hashes) and compares these
to current system files in order to detect changes.
The RPM package management system can conduct integrity
checks by comparing information in its metadata database with
files installed on the system. |
Group
Verify Integrity with AIDE
Group contains 3 rules |
[ref]
AIDE conducts integrity checks by comparing information about
files with previously-gathered information. Ideally, the AIDE database is
created immediately after initial system configuration, and then again after any
software update. AIDE is highly configurable, with further configuration
information located in /usr/share/doc/aide-VERSION . |
Rule
Install AIDE
[ref] | The aide package can be installed with the following command:
$ sudo zypper install aide | Rationale: | The AIDE package must be installed if it is to be available for integrity checking. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_aide_installed | Identifiers and References | Identifiers:
CCE-83067-9 References:
BP28(R51), 1, 11, 12, 13, 14, 15, 16, 2, 3, 5, 7, 8, 9, 5.10.1.3, APO01.06, BAI01.06, BAI02.01, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS03.05, DSS04.07, DSS05.02, DSS05.03, DSS05.05, DSS05.07, DSS06.02, DSS06.06, CCI-002696, CCI-002699, CCI-001744, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4, SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 4.1, SR 6.2, SR 7.6, 1034, 1288, 1341, 1417, A.11.2.4, A.12.1.2, A.12.2.1, A.12.4.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.14.2.7, A.15.2.1, A.8.2.3, CM-6(a), DE.CM-1, DE.CM-7, PR.DS-1, PR.DS-6, PR.DS-8, PR.IP-1, PR.IP-3, Req-11.5, SRG-OS-000363-GPOS-00150, SRG-OS-000445-GPOS-00199, SLES-12-010500, 1.3.1, SV-217148r603262_rule | |
|
Rule
Build and Test AIDE Database
[ref] | Run the following command to generate a new database:
$ sudo /usr/bin/aide --init
By default, the database will be written to the file
/var/lib/aide/aide.db.new .
Storing the database, the configuration file /etc/aide.conf , and the binary
/usr/bin/aide
(or hashes of these files), in a secure location (such as on read-only media) provides additional assurance about their integrity.
The newly-generated database can be installed as follows:
$ sudo cp /var/lib/aide/aide.db.new /var/lib/aide/aide.db
To initiate a manual check, run the following command:
$ sudo /usr/bin/aide --check
If this check produces any unexpected output, investigate. | Rationale: | For AIDE to be effective, an initial database of "known-good" information about files
must be captured and it should be able to be verified against the installed files. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_aide_build_database | Identifiers and References | Identifiers:
CCE-91483-8 References:
BP28(R51), 1, 11, 12, 13, 14, 15, 16, 2, 3, 5, 7, 8, 9, 5.10.1.3, APO01.06, BAI01.06, BAI02.01, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS03.05, DSS04.07, DSS05.02, DSS05.03, DSS05.05, DSS05.07, DSS06.02, DSS06.06, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4, SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 4.1, SR 6.2, SR 7.6, A.11.2.4, A.12.1.2, A.12.2.1, A.12.4.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.14.2.7, A.15.2.1, A.8.2.3, CM-6(a), DE.CM-1, DE.CM-7, PR.DS-1, PR.DS-6, PR.DS-8, PR.IP-1, PR.IP-3, Req-11.5, 1.3.1 | |
|
Rule
Configure Periodic Execution of AIDE
[ref] | At a minimum, AIDE should be configured to run a weekly scan.
To implement a daily execution of AIDE at 4:05am using cron, add the following line to /etc/crontab :
05 4 * * * root /usr/bin/aide --check
To implement a weekly execution of AIDE at 4:05am using cron, add the following line to /etc/crontab :
05 4 * * 0 root /usr/bin/aide --check
AIDE can be executed periodically through other means; this is merely one example.
The usage of cron's special time codes, such as @daily and
@weekly is acceptable. | Rationale: | By default, AIDE does not install itself for periodic execution. Periodically
running AIDE is necessary to reveal unexpected changes in installed files.
Unauthorized changes to the baseline configuration could make the system vulnerable
to various attacks or allow unauthorized access to the operating system. Changes to
operating system configurations can have unintended side effects, some of which may
be relevant to security.
Detecting such changes and providing an automated response can help avoid unintended,
negative consequences that could ultimately affect the security state of the operating
system. The operating system's Information Management Officer (IMO)/Information System
Security Officer (ISSO) and System Administrators (SAs) must be notified via email and/or
monitoring system trap when there is an unauthorized modification of a configuration item. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_aide_periodic_cron_checking | Identifiers and References | Identifiers:
CCE-91529-8 References:
BP28(R51), 1, 11, 12, 13, 14, 15, 16, 2, 3, 5, 7, 8, 9, 5.10.1.3, APO01.06, BAI01.06, BAI02.01, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS03.05, DSS04.07, DSS05.02, DSS05.03, DSS05.05, DSS05.07, DSS06.02, DSS06.06, CCI-001744, CCI-002699, CCI-002702, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4, SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 4.1, SR 6.2, SR 7.6, A.11.2.4, A.12.1.2, A.12.2.1, A.12.4.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.14.2.7, A.15.2.1, A.8.2.3, SI-7, SI-7(1), CM-6(a), DE.CM-1, DE.CM-7, PR.DS-1, PR.DS-6, PR.DS-8, PR.IP-1, PR.IP-3, Req-11.5, SRG-OS-000363-GPOS-00150, SRG-OS-000446-GPOS-00200, SRG-OS-000447-GPOS-00201, 1.3.2 | |
|
Rule
Disable Prelinking
[ref] | The prelinking feature changes binaries in an attempt to decrease their startup
time. In order to disable it, change or add the following line inside the file
/etc/sysconfig/prelink :
PRELINKING=no
Next, run the following command to return binaries to a normal, non-prelinked state:
$ sudo /usr/sbin/prelink -ua | Rationale: | Because the prelinking feature changes binaries, it can interfere with the
operation of certain software and/or modes such as AIDE, FIPS, etc. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_disable_prelink | Identifiers and References | References:
11, 13, 14, 2, 3, 9, 5.10.1.3, APO01.06, BAI02.01, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS04.07, DSS05.03, DSS06.02, DSS06.06, 3.13.11, CCI-000803, CCI-002450, 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4, SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 4.1, SR 7.6, A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.8.2.3, CIP-003-8 R4.2, CIP-007-3 R5.1, SC-13, CM-6(a), PR.DS-1, PR.DS-6, PR.DS-8, PR.IP-1, Req-11.5, SRG-OS-000120-VMM-000600, SRG-OS-000478-VMM-001980, SRG-OS-000396-VMM-001590, 1.5.4 | |
|
Group
Disk Partitioning
Group contains 1 rule |
[ref]
To ensure separation and protection of data, there
are top-level system directories which should be placed on their
own physical partition or logical volume. The installer's default
partitioning scheme creates separate logical volumes for
/ , /boot , and swap .
- If starting with any of the default layouts, check the box to
\"Review and modify partitioning.\" This allows for the easy creation
of additional logical volumes inside the volume group already
created, though it may require making
/ 's logical volume smaller to
create space. In general, using logical volumes is preferable to
using partitions because they can be more easily adjusted
later. - If creating a custom layout, create the partitions mentioned in
the previous paragraph (which the installer will require anyway),
as well as separate ones described in the following sections.
If a system has already been installed, and the default
partitioning
scheme was used, it is possible but nontrivial to
modify it to create separate logical volumes for the directories
listed above. The Logical Volume Manager (LVM) makes this possible.
See the LVM HOWTO at
http://tldp.org/HOWTO/LVM-HOWTO/
for more detailed information on LVM. |
Rule
Ensure /tmp Located On Separate Partition
[ref] | The /tmp directory is a world-writable directory used
for temporary file storage. Ensure it has its own partition or
logical volume at installation time, or migrate it using LVM. | Rationale: | The /tmp partition is used as temporary storage by many programs.
Placing /tmp in its own partition enables the setting of more
restrictive mount options, which can help protect programs which use it. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_partition_for_tmp | Identifiers and References | Identifiers:
CCE-91487-9 References:
BP28(R12), 12, 15, 8, APO13.01, DSS05.02, CCI-000366, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.13.1.1, A.13.2.1, A.14.1.3, CM-6(a), SC-5(2), PR.PT-4, SRG-OS-000480-GPOS-00227, 1.1.2 | |
|
Group
GNOME Desktop Environment
Group contains 1 rule |
[ref]
GNOME is a graphical desktop environment bundled with many Linux distributions that
allow users to easily interact with the operating system graphically rather than
textually. The GNOME Graphical Display Manager (GDM) provides login, logout, and user
switching contexts as well as display server management.
GNOME is developed by the GNOME Project and is considered the default
Red Hat Graphical environment.
For more information on GNOME and the GNOME Project, see https://www.gnome.org. |
Rule
Make sure that the dconf databases are up-to-date with regards to respective keyfiles
[ref] | By default, DConf uses a binary database as a data backend.
The system-level database is compiled from keyfiles in the /etc/dconf/db/
directory by the dconf update command. More specifically, content present
in the following directories:
/etc/dconf/db/gdm.d
/etc/dconf/db/local.d | Rationale: | Unlike text-based keyfiles, the binary database is impossible to check by OVAL.
Therefore, in order to evaluate dconf configuration, both have to be true at the same time -
configuration files have to be compliant, and the database needs to be more recent than those keyfiles,
which gives confidence that it reflects them. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_dconf_db_up_to_date | Identifiers and References | Identifiers:
CCE-83182-6 References:
164.308(a)(1)(ii)(B), 164.308(a)(5)(ii)(A), SRG-OS-000480-GPOS-00227 | |
|
Group
Sudo
Group contains 3 rules |
[ref]
Sudo , which stands for "su 'do'", provides the ability to delegate authority
to certain users, groups of users, or system administrators. When configured for system
users and/or groups, Sudo can allow a user or group to execute privileged commands
that normally only root is allowed to execute.
For more information on Sudo and addition Sudo configuration options, see
https://www.sudo.ws. |
Rule
Install sudo Package
[ref] | The sudo package can be installed with the following command:
$ sudo zypper install sudo | Rationale: | sudo is a program designed to allow a system administrator to give
limited root privileges to users and log root activity. The basic philosophy
is to give as few privileges as possible but still allow system users to
get their work done.
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_sudo_installed | Identifiers and References | Identifiers:
CCE-91491-1 References:
BP28(R19), 1382, 1384, 1386, CM-6(a), FMT_MOF_EXT.1, SRG-OS-000324-GPOS-00125, 5.1.1 | |
|
Rule
Ensure Only Users Logged In To Real tty Can Execute Sudo - sudo use_pty
[ref] | The sudo use_pty tag, when specified, will only execute sudo
commands from users logged in to a real tty.
This should be enabled by making sure that the use_pty tag exists in
/etc/sudoers configuration file or any sudo configuration snippets
in /etc/sudoers.d/ . | Rationale: | Requiring that sudo commands be run in a pseudo-terminal can prevent an attacker from retaining
access to the user's terminal after the main program has finished executing. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sudo_add_use_pty | Identifiers and References | Identifiers:
CCE-91499-4 References:
BP28(R58), 5.1.2 | |
|
Rule
Ensure Sudo Logfile Exists - sudo logfile
[ref] | A custom log sudo file can be configured with the 'logfile' tag. This rule configures
a sudo custom logfile at the default location suggested by CIS, which uses
/var/log/sudo.log. | Rationale: | A sudo log file simplifies auditing of sudo commands. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_sudo_custom_logfile | Identifiers and References | References:
5.1.3 | |
|
Group
Updating Software
Group contains 2 rules |
[ref]
The zypper command line tool is used to install and
update software packages. The system also provides a graphical
software update tool in the System menu, in the Administration submenu,
called Software Update.
SUSE Linux Enterprise 12 systems contain an installed software catalog called
the RPM database, which records metadata of installed packages. Consistently using
zypper or the graphical Software Update for all software installation
allows for insight into the current inventory of installed software on the system.
|
Rule
Ensure gpgcheck Enabled In Main zypper Configuration
[ref] | The gpgcheck option controls whether
RPM packages' signatures are always checked prior to installation.
To configure zypper to check package signatures before installing
them, ensure the following line appears in /etc/zypp/zypp.conf in
the [main] section:
gpgcheck=1 | Rationale: | Changes to any software components can have significant effects on the
overall security of the operating system. This requirement ensures the
software has not been tampered with and that it has been provided by a
trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system
components must be signed with a certificate recognized and approved by the
organization.
Verifying the authenticity of the software prior to installation
validates the integrity of the patch or upgrade received from a vendor.
This ensures the software has not been tampered with and that it has been
provided by a trusted vendor. Self-signed certificates are disallowed by
this requirement. Certificates used to verify the software must be from an
approved Certificate Authority (CA). | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_globally_activated | Identifiers and References | Identifiers:
CCE-83068-7 References:
BP28(R15), 11, 2, 3, 9, 5.10.4.1, APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02, 3.4.8, CCI-001749, 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i), 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4, SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6, A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), SA-12, SA-12(10), CM-11(a), CM-11(b), PR.DS-6, PR.DS-8, PR.IP-1, FPT_TUD_EXT.1, FPT_TUD_EXT.2, Req-6.2, SRG-OS-000366-GPOS-00153, SRG-OS-000366-VMM-001430, SRG-OS-000370-VMM-001460, SRG-OS-000404-VMM-001650, SLES-12-010550, 1.2.3, SV-217153r646716_rule | |
|
Rule
Ensure gpgcheck Enabled for All zypper Package Repositories
[ref] | To ensure signature checking is not disabled for
any repos, remove any lines from files in /etc/yum.repos.d of the form:
gpgcheck=0 | Rationale: | Verifying the authenticity of the software prior to installation validates
the integrity of the patch or upgrade received from a vendor. This ensures
the software has not been tampered with and that it has been provided by a
trusted vendor. Self-signed certificates are disallowed by this
requirement. Certificates used to verify the software must be from an
approved Certificate Authority (CA)." | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_ensure_gpgcheck_never_disabled | Identifiers and References | Identifiers:
CCE-83258-4 References:
BP28(R15), 11, 2, 3, 9, 5.10.4.1, APO01.06, BAI03.05, BAI06.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS06.02, 3.4.8, CCI-001749, 164.308(a)(1)(ii)(D), 164.312(b), 164.312(c)(1), 164.312(c)(2), 164.312(e)(2)(i), 4.3.4.3.2, 4.3.4.3.3, 4.3.4.4.4, SR 3.1, SR 3.3, SR 3.4, SR 3.8, SR 7.6, A.11.2.4, A.12.1.2, A.12.2.1, A.12.5.1, A.12.6.2, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, CM-5(3), SI-7, SC-12, SC-12(3), CM-6(a), SA-12, SA-12(10), CM-11(a), CM-11(b), PR.DS-6, PR.DS-8, PR.IP-1, FPT_TUD_EXT.1, FPT_TUD_EXT.2, Req-6.2, SRG-OS-000366-GPOS-00153, SRG-OS-000366-VMM-001430, SRG-OS-000370-VMM-001460, SRG-OS-000404-VMM-001650, 1.2.3 | |
|
Group
Account and Access Control
Group contains 15 groups and 35 rules |
[ref]
In traditional Unix security, if an attacker gains
shell access to a certain login account, they can perform any action
or access any file to which that account has access. Therefore,
making it more difficult for unauthorized people to gain shell
access to accounts, particularly to privileged accounts, is a
necessary part of securing a system. This section introduces
mechanisms for restricting access to accounts under
SUSE Linux Enterprise 12. |
Group
Warning Banners for System Accesses
Group contains 1 group and 10 rules |
[ref]
Each system should expose as little information about
itself as possible.
System banners, which are typically displayed just before a
login prompt, give out information about the service or the host's
operating system. This might include the distribution name and the
system kernel version, and the particular version of a network
service. This information can assist intruders in gaining access to
the system as it can reveal whether the system is running
vulnerable software. Most network services can be configured to
limit what information is displayed.
Many organizations implement security policies that require a
system banner provide notice of the system's ownership, provide
warning to unauthorized users, and remind authorized users of their
consent to monitoring. |
Group
Implement a GUI Warning Banner
Group contains 2 rules |
[ref]
In the default graphical environment, users logging
directly into the system are greeted with a login screen provided
by the GNOME Display Manager (GDM). The warning banner should be
displayed in this graphical environment for these users.
The following sections describe how to configure the GDM login
banner. |
Rule
Enable GNOME3 Login Warning Banner
[ref] | In the default graphical environment, displaying a login warning banner
in the GNOME Display Manager's login screen can be enabled on the login
screen by setting banner-message-enable to true .
To enable, add or edit banner-message-enable to
/etc/dconf/db/gdm.d/00-security-settings . For example:
[org/gnome/login-screen]
banner-message-enable=true
Once the setting has been added, add a lock to
/etc/dconf/db/gdm.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/login-screen/banner-message-enable
After the settings have been set, run dconf update .
The banner text must also be set. | Rationale: | Display of a standardized and approved use notification before granting access to the operating system
ensures privacy and security notification verbiage used is consistent with applicable federal laws,
Executive Orders, directives, policies, regulations, standards, and guidance.
For U.S. Government systems, system use notifications are required only for access via login interfaces
with human users and are not required when such human interfaces do not exist. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_dconf_gnome_banner_enabled | Identifiers and References | Identifiers:
CCE-83005-9 References:
1, 12, 15, 16, DSS05.04, DSS05.10, DSS06.10, 3.1.9, CCI-000048, CCI-000050, CCI-001384, CCI-001385, CCI-001386, CCI-001387, CCI-001388, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9, A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3, AC-8(a), AC-8(b), AC-8(c), PR.AC-7, FMT_MOF_EXT.1, SRG-OS-000023-GPOS-00006, SRG-OS-000228-GPOS-00088, SLES-12-010040, 1.9, SV-217105r646678_rule | |
|
Rule
Set the GNOME3 Login Warning Banner Text
[ref] | In the default graphical environment, configuring the login warning banner text
in the GNOME Display Manager's login screen can be configured on the login
screen by setting banner-message-text to 'APPROVED_BANNER'
where APPROVED_BANNER is the approved banner for your environment.
To enable, add or edit banner-message-text to
/etc/dconf/db/gdm.d/00-security-settings . For example:
[org/gnome/login-screen]
banner-message-text='APPROVED_BANNER'
Once the setting has been added, add a lock to
/etc/dconf/db/gdm.d/locks/00-security-settings-lock to prevent user modification.
For example:
/org/gnome/login-screen/banner-message-text
After the settings have been set, run dconf update .
When entering a warning banner that spans several lines, remember
to begin and end the string with ' and use \n for new lines. | Rationale: | An appropriate warning message reinforces policy awareness during the logon
process and facilitates possible legal action against attackers. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_dconf_gnome_login_banner_text | Identifiers and References | Identifiers:
CCE-83007-5 References:
1, 12, 15, 16, DSS05.04, DSS05.10, DSS06.10, 3.1.9, CCI-000048, CCI-001384, CCI-001385, CCI-001386, CCI-001387, CCI-001388, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9, A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3, AC-8(a), AC-8(c), PR.AC-7, FMT_MOF_EXT.1, SRG-OS-000023-GPOS-00006, SRG-OS-000228-GPOS-00088, SLES-12-010050, 1.9, SV-217106r646681_rule | |
|
Rule
Modify the System Login Banner
[ref] |
To configure the system login banner edit /etc/issue . Replace the
default text with a message compliant with the local site policy or a legal
disclaimer.
The DoD required text is either:
You are accessing a U.S. Government (USG) Information System (IS) that
is provided for USG-authorized use only. By using this IS (which includes
any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS
for purposes including, but not limited to, penetration testing, COMSEC
monitoring, network operations and defense, personnel misconduct (PM), law
enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private,
are subject to routine monitoring, interception, and search, and may be
disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access
controls) to protect USG interests -- not for your personal benefit or
privacy.
-Notwithstanding the above, using this IS does not constitute consent
to PM, LE or CI investigative searching or monitoring of the content of
privileged communications, or work product, related to personal
representation or services by attorneys, psychotherapists, or clergy, and
their assistants. Such communications and work product are private and
confidential. See User Agreement for details.
OR:
I've read & consent to terms in IS user agreem't. | Rationale: | Display of a standardized and approved use notification before granting
access to the operating system ensures privacy and security notification
verbiage used is consistent with applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.
System use notifications are required only for access via login interfaces
with human users and are not required when such human interfaces do not
exist. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_banner_etc_issue | Identifiers and References | Identifiers:
CCE-83054-7 References:
1, 12, 15, 16, DSS05.04, DSS05.10, DSS06.10, 3.1.9, CCI-000048, CCI-000050, CCI-001384, CCI-001385, CCI-001386, CCI-001387, CCI-001388, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9, A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3, AC-8(a), AC-8.1(ii), PR.AC-7, FMT_MOF_EXT.1, SRG-OS-000023-GPOS-00006, SRG-OS-000228-GPOS-00088, SRG-OS-000023-VMM-000060, SRG-OS-000024-VMM-000070, SLES-12-010030, 1.7.1.2, SV-217104r603262_rule | |
|
Rule
Modify the System Message of the Day Banner
[ref] | To configure the system message banner edit /etc/motd . Replace the
default text with a message compliant with the local site policy or a legal
disclaimer.
The DoD required text is either:
You are accessing a U.S. Government (USG) Information System (IS) that
is provided for USG-authorized use only. By using this IS (which includes
any device attached to this IS), you consent to the following conditions:
-The USG routinely intercepts and monitors communications on this IS
for purposes including, but not limited to, penetration testing, COMSEC
monitoring, network operations and defense, personnel misconduct (PM), law
enforcement (LE), and counterintelligence (CI) investigations.
-At any time, the USG may inspect and seize data stored on this IS.
-Communications using, or data stored on, this IS are not private,
are subject to routine monitoring, interception, and search, and may be
disclosed or used for any USG-authorized purpose.
-This IS includes security measures (e.g., authentication and access
controls) to protect USG interests -- not for your personal benefit or
privacy.
-Notwithstanding the above, using this IS does not constitute consent
to PM, LE or CI investigative searching or monitoring of the content of
privileged communications, or work product, related to personal
representation or services by attorneys, psychotherapists, or clergy, and
their assistants. Such communications and work product are private and
confidential. See User Agreement for details.
OR:
I've read & consent to terms in IS user agreem't. | Rationale: | Display of a standardized and approved use notification before granting
access to the operating system ensures privacy and security notification
verbiage used is consistent with applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.
System use notifications are required only for access via login interfaces
with human users and are not required when such human interfaces do not
exist. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_banner_etc_motd | Identifiers and References | References:
1.7.1.1 | |
|
Rule
Verify Group Ownership of System Login Banner
[ref] |
To properly set the group owner of /etc/issue , run the command:
$ sudo chgrp root /etc/issue | Rationale: | Display of a standardized and approved use notification before granting
access to the operating system ensures privacy and security notification
verbiage used is consistent with applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.
Proper group ownership will ensure that only root user can modify the banner. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_groupowner_etc_issue | Identifiers and References | References:
1.7.1.5 | |
|
Rule
Verify Group Ownership of Message of the Day Banner
[ref] |
To properly set the group owner of /etc/motd , run the command:
$ sudo chgrp root /etc/motd | Rationale: | Display of a standardized and approved use notification before granting
access to the operating system ensures privacy and security notification
verbiage used is consistent with applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.
Proper group ownership will ensure that only root user can modify the banner. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_groupowner_etc_motd | Identifiers and References | References:
1.7.1.4 | |
|
Rule
Verify ownership of System Login Banner
[ref] |
To properly set the owner of /etc/issue , run the command:
$ sudo chown root /etc/issue | Rationale: | Display of a standardized and approved use notification before granting
access to the operating system ensures privacy and security notification
verbiage used is consistent with applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.
Proper ownership will ensure that only root user can modify the banner. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_owner_etc_issue | Identifiers and References | References:
1.7.1.5 | |
|
Rule
Verify ownership of Message of the Day Banner
[ref] |
To properly set the owner of /etc/motd , run the command:
$ sudo chown root /etc/motd | Rationale: | Display of a standardized and approved use notification before granting
access to the operating system ensures privacy and security notification
verbiage used is consistent with applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.
Proper ownership will ensure that only root user can modify the banner. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_owner_etc_motd | Identifiers and References | References:
1.7.1.4 | |
|
Rule
Verify permissions on System Login Banner
[ref] |
To properly set the permissions of /etc/issue , run the command:
$ sudo chmod 0644 /etc/issue | Rationale: | Display of a standardized and approved use notification before granting
access to the operating system ensures privacy and security notification
verbiage used is consistent with applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.
Proper permissions will ensure that only root user can modify the banner. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_etc_issue | Identifiers and References | References:
1.7.1.5 | |
|
Rule
Verify permissions on Message of the Day Banner
[ref] |
To properly set the permissions of /etc/motd , run the command:
$ sudo chmod 0644 /etc/motd | Rationale: | Display of a standardized and approved use notification before granting
access to the operating system ensures privacy and security notification
verbiage used is consistent with applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.
Proper permissions will ensure that only root user can modify the banner. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_etc_motd | Identifiers and References | References:
1.7.1.4 | |
|
Group
Protect Accounts by Configuring PAM
Group contains 4 groups and 8 rules |
[ref]
PAM, or Pluggable Authentication Modules, is a system
which implements modular authentication for Linux programs. PAM provides
a flexible and configurable architecture for authentication, and it should be configured
to minimize exposure to unnecessary risk. This section contains
guidance on how to accomplish that.
PAM is implemented as a set of shared objects which are
loaded and invoked whenever an application wishes to authenticate a
user. Typically, the application must be running as root in order
to take advantage of PAM, because PAM's modules often need to be able
to access sensitive stores of account information, such as /etc/shadow.
Traditional privileged network listeners
(e.g. sshd) or SUID programs (e.g. sudo) already meet this
requirement. An SUID root application, userhelper, is provided so
that programs which are not SUID or privileged themselves can still
take advantage of PAM.
PAM looks in the directory /etc/pam.d for
application-specific configuration information. For instance, if
the program login attempts to authenticate a user, then PAM's
libraries follow the instructions in the file /etc/pam.d/login
to determine what actions should be taken.
One very important file in /etc/pam.d is
/etc/pam.d/system-auth . This file, which is included by
many other PAM configuration files, defines 'default' system authentication
measures. Modifying this file is a good way to make far-reaching
authentication changes, for instance when implementing a
centralized authentication service. Warning:
Be careful when making changes to PAM's configuration files.
The syntax for these files is complex, and modifications can
have unexpected consequences. The default configurations shipped
with applications should be sufficient for most users. |
Group
Set Lockouts for Failed Password Attempts
Group contains 1 rule |
[ref]
The pam_faillock PAM module provides the capability to
lock out user accounts after a number of failed login attempts. Its
documentation is available in
/usr/share/doc/pam-VERSION/txts/README.pam_faillock .
Warning:
Locking out user accounts presents the
risk of a denial-of-service attack. The lockout policy
must weigh whether the risk of such a
denial-of-service attack outweighs the benefits of thwarting
password guessing attacks. |
Rule
Set Deny For Failed Password Attempts
[ref] | The SUSE Linux Enterprise 12 operating system must lock an account after - at most - 5
consecutive invalid access attempts. | Rationale: | By limiting the number of failed logon attempts, the risk of unauthorized
system access via user password guessing, otherwise known as brute-force
attacks, is reduced. Limits are imposed by locking the account.
To configure the operating system to lock an account after three
unsuccessful consecutive access attempts using pam_tally2.so ,
modify the content of both /etc/pam.d/common-auth and
/etc/pam.d/common-account as follows:
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_passwords_pam_tally2 | Identifiers and References | Identifiers:
CCE-83055-4 References:
CCI-000044, AC-7(a), SRG-OS-000021-GPOS-00005, SLES-12-010130, 5.4.2, SV-217114r603262_rule | |
|
Group
Set Password Quality Requirements
Group contains 1 group and 6 rules |
[ref]
The default pam_pwquality PAM module provides strength
checking for passwords. It performs a number of checks, such as
making sure passwords are not similar to dictionary words, are of
at least a certain length, are not the previous password reversed,
and are not simply a change of case from the previous password. It
can also require passwords to be in certain character classes. The
pam_pwquality module is the preferred way of configuring
password requirements.
The man pages pam_pwquality(8)
provide information on the capabilities and configuration of
each. |
Group
Set Password Quality Requirements, if using
pam_cracklib
Group contains 6 rules |
[ref]
The pam_cracklib PAM module can be configured to meet
requirements for a variety of policies.
For example, to configure pam_cracklib to require at least one uppercase
character, lowercase character, digit, and other (special)
character, locate the following line in /etc/pam.d/system-auth :
password requisite pam_cracklib.so try_first_pass retry=3
and then alter it to read:
password required pam_cracklib.so try_first_pass retry=3 maxrepeat=3 minlen=14 dcredit=-1 ucredit=-1 ocredit=-1 lcredit=-1 difok=4
If no such line exists, add one as the first line of the password section in /etc/pam.d/system-auth .
The arguments can be modified to ensure compliance with
your organization's security policy. Discussion of each parameter follows. Warning:
Note that the password quality requirements are not enforced for the
root account for some reason. |
Rule
Set Password Strength Minimum Digit Characters
[ref] | The pam_cracklib module's dcredit parameter controls requirements
for usage of digits in a password. When set to a negative number, any
password will be required to contain that many digits. When set to a
positive number, pam_cracklib will grant +1 additional length credit for
each digit. Add dcredit=-1 after pam_cracklib.so to require use of
a digit in passwords. | Rationale: | Requiring digits makes password guessing attacks more difficult by ensuring
a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_dcredit | Identifiers and References | Identifiers:
CCE-83168-5 References:
CCI-000194, IA-5(a), IA-5(v), SRG-OS-000071-GPOS-00039, SLES-12-010170, 5.4.1, SV-217119r603262_rule | |
|
Rule
Set Password Strength Minimum Lowercase Characters
[ref] | The pam_cracklib module's lcredit= parameter controls requirements
for usage of lowercase letters in a password. When set to a negative
number, any password will be required to contain that many lowercase
characters. When set to a positive number, pam_cracklib will grant +1
additional length credit for each lowercase character.
Add lcredit=-1 after pam_cracklib.so to require use of a
lowercase character in passwords. | Rationale: | Requiring a minimum number of lowercase characters makes password guessing
attacks more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_lcredit | Identifiers and References | Identifiers:
CCE-83167-7 References:
CCI-000193, IA-5(a), IA-5(v), SRG-OS-000070-GPOS-00038, SLES-12-010160, 5.4.1, SV-217118r603262_rule | |
|
Rule
Set Password Minimum Length
[ref] | The pam_cracklib module's minlen parameter controls requirements for
minimum characters required in a password. Add minlen=14
to set minimum password length requirements. | Rationale: | Password length is one factor of several that helps to determine
strength and how long it takes to crack a password. Use of more characters in
a password helps to exponentially increase the time and/or resources
required to compromise the password. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_minlen | Identifiers and References | Identifiers:
CCE-83188-3 References:
CCI-000205, IA-5(1)(a), SRG-OS-000078-GPOS-00046, SLES-12-010250, 5.4.1, SV-217127r603262_rule | |
|
Rule
Set Password Strength Minimum Special Characters
[ref] | The pam_cracklib module's ocredit= parameter controls requirements
for usage of special (or ``other'') characters in a password. When set to a
negative number, any password will be required to contain that many special
characters. When set to a positive number, pam_cracklib will grant +1
additional length credit for each special character.
Make sure the ocredit parameter for the pam_cracklib module is
set to less than or equal to -1 . For example, ocredit=-1 . | Rationale: | Requiring a minimum number of special characters makes password guessing
attacks more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_ocredit | Identifiers and References | Identifiers:
CCE-83169-3 References:
CCI-001619, IA-5(a), IA-5(v), SRG-OS-000266-GPOS-00101, SLES-12-010180, 5.4.1, SV-217120r603262_rule | |
|
Rule
Set Password Retry Limit
[ref] | The pam_cracklib module's retry parameter controls the maximum
number of times to prompt the user for the password before returning
with error. Make sure it is configured with a value that is no more than
3. For example, retry=1 . | Rationale: | To reduce opportunities for successful guesses and brute-force attacks. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_retry | Identifiers and References | Identifiers:
CCE-83174-3 References:
CCI-000366, CM-6(b), CM-6.1, SRG-OS-000480-GPOS-00225, SLES-12-010320, 5.4.1, SV-217134r603262_rule | |
|
Rule
Set Password Strength Minimum Uppercase Characters
[ref] | The pam_cracklib module's ucredit= parameter controls requirements
for usage of uppercase letters in a password. When set to a negative
number, any password will be required to contain that many uppercase
characters. When set to a positive number, pam_cracklib will grant +1
additional length credit for each uppercase character.
Add ucredit=-1 after pam_cracklib.so to require use of an upper
case character in passwords. | Rationale: | Requiring a minimum number of uppercase characters makes password guessing
attacks more difficult by ensuring a larger search space. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_cracklib_accounts_password_pam_ucredit | Identifiers and References | Identifiers:
CCE-83166-9 References:
CCI-000192, IA-5(a), IA-5(v), SRG-OS-000069-GPOS-00037, SLES-12-010150, 5.4.1, SV-217117r603262_rule | |
|
Group
Set Password Hashing Algorithm
Group contains 1 rule |
[ref]
The system's default algorithm for storing password hashes in
/etc/shadow is SHA-512. This can be configured in several
locations. |
Rule
Set Password Hashing Algorithm in /etc/login.defs
[ref] | In /etc/login.defs , add or correct the following line to ensure
the system will use SHA-512 as the hashing algorithm:
ENCRYPT_METHOD SHA512 | Rationale: | Passwords need to be protected at all times, and encryption is the standard method for protecting passwords.
If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised. Passwords
that are encrypted with a weak algorithm are no more protected than if they are kept in plain text.
Using a stronger hashing algorithm makes password cracking attacks more difficult. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_set_password_hashing_algorithm_logindefs | Identifiers and References | Identifiers:
CCE-83029-9 References:
BP28(R32), 1, 12, 15, 16, 5, 5.6.2.2, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, 3.13.11, CCI-000196, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 0418, 1055, 1402, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, IA-5(c), IA-5(1)(c), CM-6(a), PR.AC-1, PR.AC-6, PR.AC-7, Req-8.2.1, SRG-OS-000073-GPOS-00041, SLES-12-010210, 5.5.1.2, SV-217122r646689_rule | |
|
Group
Protect Physical Console Access
Group contains 2 rules |
[ref]
It is impossible to fully protect a system from an
attacker with physical access, so securing the space in which the
system is located should be considered a necessary step. However,
there are some steps which, if taken, make it more difficult for an
attacker to quickly or undetectably modify a system from its
console. |
Rule
Require Authentication for Emergency Systemd Target
[ref] | Emergency mode is intended as a system recovery
method, providing a single user root access to the system
during a failed boot sequence.
By default, Emergency mode is protected by requiring a password and is set
in /usr/lib/systemd/system/emergency.service . | Rationale: | This prevents attackers with physical access from trivially bypassing security
on the machine and gaining root access. Such accesses are further prevented
by configuring the bootloader password. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_require_emergency_target_auth | Identifiers and References | References:
1, 11, 12, 14, 15, 16, 18, 3, 5, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.06, DSS06.10, 3.1.1, 3.4.5, CCI-000213, 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii), 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, A.18.1.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, IA-2, AC-3, CM-6(a), PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.PT-3, FIA_UAU.1, SRG-OS-000080-GPOS-00048, 1.4.3 | |
|
Rule
Require Authentication for Single User Mode
[ref] | Single-user mode is intended as a system recovery
method, providing a single user root access to the system by
providing a boot option at startup. By default, no authentication
is performed if single-user mode is selected.
By default, single-user mode is protected by requiring a password and is set
in /usr/lib/systemd/system/rescue.service . | Rationale: | This prevents attackers with physical access from trivially bypassing security
on the machine and gaining root access. Such accesses are further prevented
by configuring the bootloader password. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_require_singleuser_auth | Identifiers and References | References:
1, 11, 12, 14, 15, 16, 18, 3, 5, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.06, DSS06.10, 3.1.1, 3.4.5, CCI-000213, 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii), 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, 0421, 0422, 0431, 0974, 1173, 1401, 1504, 1505, 1546, 1557, 1558, 1559, 1560, 1561, A.18.1.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, IA-2, AC-3, CM-6(a), PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.PT-3, FIA_UAU.1, SRG-OS-000080-GPOS-00048, 1.4.3 | |
|
Group
Protect Accounts by Restricting Password-Based Login
Group contains 4 groups and 11 rules |
[ref]
Conventionally, Unix shell accounts are accessed by
providing a username and password to a login program, which tests
these values for correctness using the /etc/passwd and
/etc/shadow files. Password-based login is vulnerable to
guessing of weak passwords, and to sniffing and man-in-the-middle
attacks against passwords entered over a network or at an insecure
console. Therefore, mechanisms for accessing accounts by entering
usernames and passwords should be restricted to those which are
operationally necessary. |
Group
Set Account Expiration Parameters
Group contains 2 rules |
[ref]
Accounts can be configured to be automatically disabled
after a certain time period,
meaning that they will require administrator interaction to become usable again.
Expiration of accounts after inactivity can be set for all accounts by default
and also on a per-account basis, such as for accounts that are known to be temporary.
To configure automatic expiration of an account following
the expiration of its password (that is, after the password has expired and not been changed),
run the following command, substituting NUM_DAYS and USER appropriately:
$ sudo chage -I NUM_DAYS USER
Accounts, such as temporary accounts, can also be configured to expire on an explicitly-set date with the
-E option.
The file /etc/default/useradd controls
default settings for all newly-created accounts created with the system's
normal command line utilities. Warning:
This will only apply to newly created accounts |
Rule
Set Account Expiration Following Inactivity
[ref] | To specify the number of days after a password expires (which
signifies inactivity) until an account is permanently disabled, add or correct
the following line in /etc/default/useradd :
INACTIVE=30
If a password is currently on the verge of expiration, then
30
day(s) remain(s) until the account is automatically
disabled. However, if the password will not expire for another 60 days, then 60
days plus 30 day(s) could
elapse until the account would be automatically disabled. See the
useradd man page for more information. | Rationale: | Inactive identifiers pose a risk to systems and applications because attackers may exploit an inactive identifier and potentially obtain undetected access to the system.
Disabling inactive accounts ensures that accounts which may not have been responsibly removed are not available to attackers who may have compromised their credentials.
Owners of inactive accounts will not notice if unauthorized access to their user account has been obtained. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_account_disable_post_pw_expiration | Identifiers and References | Identifiers:
CCE-83051-3 References:
1, 12, 13, 14, 15, 16, 18, 3, 5, 7, 8, 5.6.2.1.1, DSS01.03, DSS03.05, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, 3.5.6, CCI-000017, CCI-000795, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 6.2, A.12.4.1, A.12.4.3, A.18.1.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-004-6 R2.2.2, CIP-004-6 R2.2.3, CIP-007-3 R.1.3, CIP-007-3 R5, CIP-007-3 R5.1.1, CIP-007-3 R5.1.3, CIP-007-3 R5.2.1, CIP-007-3 R5.2.3, IA-4(e), AC-2(3), CM-6(a), DE.CM-1, DE.CM-3, PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, Req-8.1.4, SRG-OS-000118-GPOS-00060, SRG-OS-000003-VMM-000030, SRG-OS-000118-VMM-000590, SLES-12-010340, 5.5.1.5, SV-217136r603262_rule | |
|
Rule
Ensure All Accounts on the System Have Unique Names
[ref] | Ensure accounts on the system have unique names.
To ensure all accounts have unique names, run the following command:
$ sudo getent passwd | awk -F: '{ print $1}' | uniq -d
If a username is returned, change or delete the username. | Rationale: | Unique usernames allow for accountability on the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_account_unique_name | Identifiers and References | References:
5.5.2, CCI-000770, CCI-000804, Req-8.1.1, 6.2.16 | |
|
Group
Set Password Expiration Parameters
Group contains 3 rules |
[ref]
The file /etc/login.defs controls several
password-related settings. Programs such as passwd ,
su , and
login consult /etc/login.defs to determine
behavior with regard to password aging, expiration warnings,
and length. See the man page login.defs(5) for more information.
Users should be forced to change their passwords, in order to
decrease the utility of compromised passwords. However, the need to
change passwords often should be balanced against the risk that
users will reuse or write down passwords if forced to change them
too often. Forcing password changes every 90-360 days, depending on
the environment, is recommended. Set the appropriate value as
PASS_MAX_DAYS and apply it to existing accounts with the
-M flag.
The PASS_MIN_DAYS ( -m ) setting prevents password
changes for 7 days after the first change, to discourage password
cycling. If you use this setting, train users to contact an administrator
for an emergency password change in case a new password becomes
compromised. The PASS_WARN_AGE ( -W ) setting gives
users 7 days of warnings at login time that their passwords are about to expire.
For example, for each existing human user USER, expiration parameters
could be adjusted to a 180 day maximum password age, 7 day minimum password
age, and 7 day warning period with the following command:
$ sudo chage -M 180 -m 7 -W 7 USER |
Rule
Set Password Maximum Age
[ref] | To specify password maximum age for new accounts,
edit the file /etc/login.defs
and add or correct the following line:
PASS_MAX_DAYS 365
A value of 180 days is sufficient for many environments.
The DoD requirement is 60.
The profile requirement is 365 . | Rationale: | Any password, no matter how complex, can eventually be cracked. Therefore, passwords
need to be changed periodically. If the operating system does not limit the lifetime
of passwords and force users to change their passwords, there is the risk that the
operating system passwords could be compromised.
Setting the password maximum age ensures users are required to
periodically change their passwords. Requiring shorter password lifetimes
increases the risk of users writing down the password in a convenient
location subject to physical compromise. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_maximum_age_login_defs | Identifiers and References | Identifiers:
CCE-83050-5 References:
BP28(R18), 1, 12, 15, 16, 5, 5.6.2.1, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, 3.5.6, CCI-000199, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 0418, 1055, 1402, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, IA-5(f), IA-5(1)(d), CM-6(a), PR.AC-1, PR.AC-6, PR.AC-7, Req-8.2.4, SRG-OS-000076-GPOS-00044, SLES-12-010280, 5.5.1.2, SV-217130r646701_rule | |
|
Rule
Set Password Minimum Age
[ref] | To specify password minimum age for new accounts,
edit the file /etc/login.defs
and add or correct the following line:
PASS_MIN_DAYS 1
A value of 1 day is considered sufficient for many
environments. The DoD requirement is 1.
The profile requirement is 1 . | Rationale: | Enforcing a minimum password lifetime helps to prevent repeated password
changes to defeat the password reuse or history enforcement requirement. If
users are allowed to immediately and continually change their password,
then the password could be repeatedly changed in a short period of time to
defeat the organization's policy regarding password reuse.
Setting the minimum password age protects against users cycling back to a
favorite password after satisfying the password reuse requirement. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_minimum_age_login_defs | Identifiers and References | Identifiers:
CCE-83042-2 References:
1, 12, 15, 16, 5, 5.6.2.1.1, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, 3.5.8, CCI-000198, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 0418, 1055, 1402, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, IA-5(f), IA-5(1)(d), CM-6(a), PR.AC-1, PR.AC-6, PR.AC-7, SRG-OS-000075-GPOS-00043, SLES-12-010260, 5.5.1.3, SV-217128r646695_rule | |
|
Rule
Set Password Warning Age
[ref] | To specify how many days prior to password
expiration that a warning will be issued to users,
edit the file /etc/login.defs and add or correct
the following line:
PASS_WARN_AGE 7
The DoD requirement is 7.
The profile requirement is 7 . | Rationale: | Setting the password warning age enables users to
make the change at a practical time. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_warn_age_login_defs | Identifiers and References | References:
1, 12, 13, 14, 15, 16, 18, 3, 5, 7, 8, DSS01.03, DSS03.05, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, 3.5.8, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 6.2, 0418, 1055, 1402, A.12.4.1, A.12.4.3, A.18.1.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, IA-5(f), IA-5(1)(d), CM-6(a), DE.CM-1, DE.CM-3, PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, 5.5.1.4 | |
|
Group
Verify Proper Storage and Existence of Password
Hashes
Group contains 3 rules |
[ref]
By default, password hashes for local accounts are stored
in the second field (colon-separated) in
/etc/shadow . This file should be readable only by
processes running with root credentials, preventing users from
casually accessing others' password hashes and attempting
to crack them.
However, it remains possible to misconfigure the system
and store password hashes
in world-readable files such as /etc/passwd , or
to even store passwords themselves in plaintext on the system.
Using system-provided tools for password change/creation
should allow administrators to avoid such misconfiguration. |
Rule
Verify All Account Password Hashes are Shadowed
[ref] | If any password hashes are stored in /etc/passwd (in the second field,
instead of an x or * ), the cause of this misconfiguration should be
investigated. The account should have its password reset and the hash should be
properly stored, or the account should be deleted entirely. | Rationale: | The hashes for all user account passwords should be stored in
the file /etc/shadow and never in /etc/passwd ,
which is readable by all users. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_password_all_shadowed | Identifiers and References | References:
1, 12, 15, 16, 5, 5.5.2, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, 3.5.10, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, 1410, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, IA-5(h), CM-6(a), PR.AC-1, PR.AC-6, PR.AC-7, Req-8.2.1, 6.2.1 | |
|
Rule
All GIDs referenced in /etc/passwd must be defined in /etc/group
[ref] | Add a group to the system for each GID referenced without a corresponding group. | Rationale: | If a user is assigned the Group Identifier (GID) of a group not existing on the system, and a group
with the Group Identifier (GID) is subsequently created, the user may have unintended rights to
any files associated with the group. | Severity: | low | Rule ID: | xccdf_org.ssgproject.content_rule_gid_passwd_group_same | Identifiers and References | References:
1, 12, 15, 16, 5, 5.5.2, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, CCI-000764, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, IA-2, CM-6(a), PR.AC-1, PR.AC-6, PR.AC-7, Req-8.5.a, SRG-OS-000104-GPOS-00051, 6.2.13 | |
|
Rule
Verify No netrc Files Exist
[ref] | The .netrc files contain login information
used to auto-login into FTP servers and reside in the user's home
directory. These files may contain unencrypted passwords to
remote FTP servers making them susceptible to access by unauthorized
users and should not be used. Any .netrc files should be removed. | Rationale: | Unencrypted passwords for remote FTP servers may be stored in .netrc
files. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_no_netrc_files | Identifiers and References | References:
1, 11, 12, 14, 15, 16, 18, 3, 5, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.06, DSS06.10, CCI-000196, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, A.18.1.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-003-8 R1.3, CIP-003-8 R3, CIP-003-8 R3.1, CIP-003-8 R3.2, CIP-003-8 R3.3, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, IA-5(h), IA-5(1)(c), CM-6(a), IA-5(7), PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.PT-3 | |
|
Group
Restrict Root Logins
Group contains 2 rules |
[ref]
Direct root logins should be allowed only for emergency use.
In normal situations, the administrator should access the system
via a unique unprivileged account, and then use su or sudo to execute
privileged commands. Discouraging administrators from accessing the
root account directly ensures an audit trail in organizations with
multiple administrators. Locking down the channels through which
root can connect directly also reduces opportunities for
password-guessing against the root account. The login program
uses the file /etc/securetty to determine which interfaces
should allow root logins.
The virtual devices /dev/console
and /dev/tty* represent the system consoles (accessible via
the Ctrl-Alt-F1 through Ctrl-Alt-F6 keyboard sequences on a default
installation). The default securetty file also contains /dev/vc/* .
These are likely to be deprecated in most environments, but may be retained
for compatibility. Root should also be prohibited from connecting
via network protocols. Other sections of this document
include guidance describing how to prevent root from logging in via SSH. |
Rule
Verify Only Root Has UID 0
[ref] | If any account other than root has a UID of 0, this misconfiguration should
be investigated and the accounts other than root should be removed or have
their UID changed.
If the account is associated with system commands or applications the UID
should be changed to one greater than "0" but less than "1000."
Otherwise assign a UID greater than "1000" that has not already been
assigned. | Rationale: | An account has root authority if it has a UID of 0. Multiple accounts
with a UID of 0 afford more opportunity for potential intruders to
guess a password for a privileged account. Proper configuration of
sudo is recommended to afford multiple system administrators
access to root privileges in an accountable manner. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_no_uid_except_zero | Identifiers and References | Identifiers:
CCE-83020-8 References:
1, 12, 13, 14, 15, 16, 18, 3, 5, APO01.06, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.02, DSS06.03, DSS06.10, 3.1.1, 3.1.5, CCI-000366, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 5.2, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.18.1.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.2.3, CIP-004-6 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.2, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, CM-6(b), CM-6.1(iv), PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.DS-5, SRG-OS-000480-GPOS-00227, SLES-12-010650, 6.2.3, SV-217164r603262_rule | |
|
Rule
Ensure that System Accounts Do Not Run a Shell Upon Login
[ref] | Some accounts are not associated with a human user of the system, and exist to
perform some administrative function. Should an attacker be able to log into
these accounts, they should not be granted access to a shell.
The login shell for each local account is stored in the last field of each line
in /etc/passwd . System accounts are those user accounts with a user ID
less than UID_MIN, where value of UID_MIN directive is set in
/etc/login.defs configuration file. In the default configuration UID_MIN is set
to 1000, thus system accounts are those user accounts with a user ID less than
1000. The user ID is stored in the third field. If any system account
SYSACCT (other than root) has a login shell, disable it with the
command: $ sudo usermod -s /sbin/nologin SYSACCT Warning:
Do not perform the steps in this section on the root account. Doing so might
cause the system to become inaccessible. | Rationale: | Ensuring shells are not given to system accounts upon login makes it more
difficult for attackers to make use of system accounts. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_no_shelllogin_for_systemaccounts | Identifiers and References | Identifiers:
CCE-83232-9 References:
1, 12, 13, 14, 15, 16, 18, 3, 5, 7, 8, DSS01.03, DSS03.05, DSS05.04, DSS05.05, DSS05.07, DSS06.03, CCI-000366, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 6.2, 1491, A.12.4.1, A.12.4.3, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, AC-6, CM-6(a), CM-6(b), CM-6.1(iv), DE.CM-1, DE.CM-3, PR.AC-1, PR.AC-4, PR.AC-6, SRG-OS-000480-GPOS-00227, SLES-12-010631, 5.5.2, SV-237606r646781_rule | |
|
Rule
Ensure All Accounts on the System Have Unique User IDs
[ref] | Change user IDs (UIDs), or delete accounts, so each has a unique name. Warning:
Automatic remediation of this control is not available due to unique requirements of each
system. | Rationale: | To assure accountability and prevent unauthenticated access, interactive users must be identified and authenticated to prevent potential misuse and compromise of the system. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_account_unique_id | Identifiers and References | Identifiers:
CCE-83196-6 References:
CCI-000135, CCI-000764, CCI-000804, IA-2, IA-2.1, IA-8, IA-8.1, SRG-OS-000104-GPOS-00051, SRG-OS-000121-GPOS-00062, SRG-OS-000042-GPOS-00020, SLES-12-010640, 6.2.14, SV-217163r603262_rule | |
|
Group
Secure Session Configuration Files for Login Accounts
Group contains 1 group and 4 rules |
[ref]
When a user logs into a Unix account, the system
configures the user's session by reading a number of files. Many of
these files are located in the user's home directory, and may have
weak permissions as a result of user error or misconfiguration. If
an attacker can modify or even read certain types of account
configuration information, they can often gain full access to the
affected user's account. Therefore, it is important to test and
correct configuration file permissions for interactive accounts,
particularly those of privileged users such as root or system
administrators. |
Group
Ensure that Users Have Sensible Umask Values
Group contains 3 rules |
[ref]
The umask setting controls the default permissions
for the creation of new files.
With a default umask setting of 077, files and directories
created by users will not be readable by any other user on the
system. Users who wish to make specific files group- or
world-readable can accomplish this by using the chmod command.
Additionally, users can make all their files readable to their
group by default by setting a umask of 027 in their shell
configuration files. If default per-user groups exist (that is, if
every user has a default group whose name is the same as that
user's username and whose only member is the user), then it may
even be safe for users to select a umask of 007, making it very
easy to intentionally share files with groups of which the user is
a member.
|
Rule
Ensure the Default Bash Umask is Set Correctly
[ref] | To ensure the default umask for users of the Bash shell is set properly,
add or correct the umask setting in /etc/bash.bashrc to read
as follows:
umask 027 | Rationale: | The umask value influences the permissions assigned to files when they are created.
A misconfigured umask value could result in files with excessive permissions that can be read or
written to by unauthorized users. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_umask_etc_bashrc | Identifiers and References | Identifiers:
CCE-91530-6 References:
BP28(R35), 18, APO13.01, BAI03.01, BAI03.02, BAI03.03, CCI-000366, 4.3.4.3.3, A.14.1.1, A.14.2.1, A.14.2.5, A.6.1.5, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2, AC-6(1), CM-6(a), PR.IP-2, SRG-OS-000480-GPOS-00228, SRG-OS-000480-GPOS-00227, 5.5.5 | |
|
Rule
Ensure the Default Umask is Set Correctly in login.defs
[ref] | To ensure the default umask controlled by /etc/login.defs is set properly,
add or correct the UMASK setting in /etc/login.defs to read as follows:
UMASK 027 | Rationale: | The umask value influences the permissions assigned to files when they are created.
A misconfigured umask value could result in files with excessive permissions that can be read and
written to by unauthorized users. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_umask_etc_login_defs | Identifiers and References | Identifiers:
CCE-83052-1 References:
BP28(R35), 11, 18, 3, 9, APO13.01, BAI03.01, BAI03.02, BAI03.03, BAI10.01, BAI10.02, BAI10.03, BAI10.05, CCI-000366, 4.3.4.3.2, 4.3.4.3.3, SR 7.6, A.12.1.2, A.12.5.1, A.12.6.2, A.14.1.1, A.14.2.1, A.14.2.2, A.14.2.3, A.14.2.4, A.14.2.5, A.6.1.5, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2, AC-6(1), CM-6(a), PR.IP-1, PR.IP-2, SRG-OS-000480-GPOS-00228, SLES-12-010620, 5.5.5, SV-217161r603262_rule | |
|
Rule
Ensure the Default Umask is Set Correctly in /etc/profile
[ref] | To ensure the default umask controlled by /etc/profile is set properly,
add or correct the umask setting in /etc/profile to read as follows:
umask 027 | Rationale: | The umask value influences the permissions assigned to files when they are created.
A misconfigured umask value could result in files with excessive permissions that can be read or
written to by unauthorized users. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_umask_etc_profile | Identifiers and References | Identifiers:
CCE-91531-4 References:
BP28(R35), 18, APO13.01, BAI03.01, BAI03.02, BAI03.03, CCI-000366, 4.3.4.3.3, A.14.1.1, A.14.2.1, A.14.2.5, A.6.1.5, CIP-003-8 R5.1.1, CIP-003-8 R5.3, CIP-004-6 R2.3, CIP-007-3 R2.1, CIP-007-3 R2.2, CIP-007-3 R2.3, CIP-007-3 R5.1, CIP-007-3 R5.1.1, CIP-007-3 R5.1.2, AC-6(1), CM-6(a), PR.IP-2, SRG-OS-000480-GPOS-00228, SRG-OS-000480-GPOS-00227, 5.5.5 | |
|
Rule
Set Interactive Session Timeout
[ref] | Setting the TMOUT option in /etc/profile ensures that
all user sessions will terminate based on inactivity.
The value of TMOUT should be exported and read only.
The TMOUT
setting in /etc/profile.d/autologout.sh should read as follows:
TMOUT=900
readonly TMOUT
export TMOUT | Rationale: | Terminating an idle session within a short time period reduces
the window of opportunity for unauthorized personnel to take control of a
management session enabled on the console or console port that has been
left unattended. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_accounts_tmout | Identifiers and References | Identifiers:
CCE-83011-7 References:
BP28(R29), 1, 12, 15, 16, DSS05.04, DSS05.10, DSS06.10, 3.1.11, CCI-000057, CCI-001133, CCI-002361, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, SR 1.1, SR 1.10, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9, A.18.1.4, A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3, CIP-004-6 R2.2.3, CIP-007-3 R5.1, CIP-007-3 R5.2, CIP-007-3 R5.3.1, CIP-007-3 R5.3.2, CIP-007-3 R5.3.3, AC-11(a), PR.AC-7, FMT_MOF_EXT.1, SRG-OS-000163-GPOS-00072, SRG-OS-000029-GPOS-00010, SRG-OS-000163-VMM-000700, SRG-OS-000279-VMM-001010, SLES-12-010090, 5.5.4, SV-217110r603262_rule | |
|
Group
AppArmor
Group contains 1 rule |
[ref]
Many security vulnerabilities result from bugs in trusted programs. A trusted
program runs with privileges that attackers want to possess. The program fails
to keep that trust if there is a bug in the program that allows the attacker to
acquire said privilege.
AppArmor® is an application security solution designed specifically to apply
privilege confinement to suspect programs. AppArmor allows the administrator to
specify the domain of activities the program can perform by developing a
security profile. A security profile is a listing of files that the program may
access and the operations the program may perform. AppArmor secures
applications by enforcing good application behavior without relying on attack
signatures, so it can prevent attacks even if previously unknown
vulnerabilities are being exploited.
For more information on using AppArmor, see
https://www.suse.com/documentation/sles-12/book_security/data/cha_apparmor_intro.html. |
Rule
Install the pam_apparmor Package
[ref] | The pam_apparmor package can be installed with the following command:
$ sudo zypper install pam_apparmor | Rationale: | Protection of system integrity using AppArmor depends on this package being
installed. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_pam_apparmor_installed | Identifiers and References | Identifiers:
CCE-83225-3 References:
CCI-001764, CCI-001774, CCI-002165, CCI-002233, CCI-002235, AC-3(4), AC-6(8), AC-6(10), CM-7(5)(b), CM-7(2), SC-7(21), CM-6(a), SRG-OS-000312-GPOS-00122, SRG-OS-000312-GPOS-00123SRG-OS-000312-GPOS-00124, SRG-OS-000324-GPOS-00125, SRG-OS-000326-GPOS-00126, SRG-OS-000370-GPOS-00155, SRG-OS-000480-GPOS-00230, SRG-OS-000480-GPOS-00227, SRG-OS-000480-GPOS-00231, SRG-OS-000480-GPOS-00232, SLES-12-010600, 1.6.1.1, SV-217158r646719_rule | |
|
Group
GRUB2 bootloader configuration
Group contains 2 groups and 5 rules |
[ref]
During the boot process, the boot loader is
responsible for starting the execution of the kernel and passing
options to it. The boot loader allows for the selection of
different kernels - possibly on different partitions or media.
The default SUSE Linux Enterprise 12 boot loader for x86 systems is called GRUB2.
Options it can pass to the kernel include single-user mode, which
provides root access without any authentication, and the ability to
disable SELinux. To prevent local users from modifying the boot
parameters and endangering security, protect the boot loader configuration
with a password and ensure its configuration file's permissions
are set properly. |
Group
Non-UEFI GRUB2 bootloader configuration
Group contains 4 rules |
[ref]
Non-UEFI GRUB2 bootloader configuration |
Rule
Verify /boot/grub2/grub.cfg Group Ownership
[ref] | The file /boot/grub2/grub.cfg should
be group-owned by the root group to prevent
destruction or modification of the file.
To properly set the group owner of /boot/grub2/grub.cfg , run the command:
$ sudo chgrp root /boot/grub2/grub.cfg | Rationale: | The root group is a highly-privileged group. Furthermore, the group-owner of this
file should not have any access privileges anyway. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_groupowner_grub2_cfg | Identifiers and References | References:
12, 13, 14, 15, 16, 18, 3, 5, 5.5.2.2, APO01.06, DSS05.04, DSS05.07, DSS06.02, 3.4.5, CCI-000225, 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii), 4.3.3.7.3, SR 2.1, SR 5.2, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-6(a), AC-6(1), PR.AC-4, PR.DS-5, Req-7.1, SRG-OS-000480-GPOS-00227, 1.4.2 | |
|
Rule
Verify /boot/grub2/grub.cfg User Ownership
[ref] | The file /boot/grub2/grub.cfg should
be owned by the root user to prevent destruction
or modification of the file.
To properly set the owner of /boot/grub2/grub.cfg , run the command:
$ sudo chown root /boot/grub2/grub.cfg | Rationale: | Only root should be able to modify important boot parameters. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_owner_grub2_cfg | Identifiers and References | References:
12, 13, 14, 15, 16, 18, 3, 5, 5.5.2.2, APO01.06, DSS05.04, DSS05.07, DSS06.02, 3.4.5, CCI-000225, 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii), 4.3.3.7.3, SR 2.1, SR 5.2, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-6(a), AC-6(1), PR.AC-4, PR.DS-5, Req-7.1, 1.4.2 | |
|
Rule
Verify /boot/grub2/grub.cfg Permissions
[ref] | File permissions for /boot/grub2/grub.cfg should be set to 600.
To properly set the permissions of /boot/grub2/grub.cfg , run the command:
$ sudo chmod 600 /boot/grub2/grub.cfg | Rationale: | Proper permissions ensure that only the root user can modify important boot
parameters. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_file_permissions_grub2_cfg | Identifiers and References | References:
12, 13, 14, 15, 16, 18, 3, 5, APO01.06, DSS05.04, DSS05.07, DSS06.02, 3.4.5, CCI-000225, 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii), 4.3.3.7.3, SR 2.1, SR 5.2, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-6(a), AC-6(1), PR.AC-4, PR.DS-5, 1.4.2 | |
|
Rule
Set Boot Loader Password in grub2
[ref] | The grub2 boot loader should have a superuser account and password
protection enabled to protect boot-time settings.
Since plaintext passwords are a security risk, generate a hash for the password
by running the following command:
# grub2-mkpasswd-pbkdf2
When prompted, enter the password that was selected.
Using the hash from the output, modify the /etc/grub.d/40_custom
file with the following content:
set superusers="boot"
password_pbkdf2 boot grub.pbkdf2.sha512.VeryLongString
NOTE: the bootloader superuser account and password MUST differ from the
root account and password.
Once the superuser password has been added,
update the
grub.cfg file by running:
grub2-mkconfig -o /boot/grub2/grub2.cfg Warning:
To prevent hard-coded passwords, automatic remediation of this control is not available. Remediation
must be automated as a component of machine provisioning, or followed manually as outlined above.
Also, do NOT manually add the superuser account and password to the
grub.cfg file as the grub2-mkconfig command overwrites this file. | Rationale: | Password protection on the boot loader configuration ensures
users with physical access cannot trivially alter
important bootloader settings. These include which kernel to use,
and whether to enter single-user mode. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_grub2_password | Identifiers and References | Identifiers:
CCE-83044-8 References:
BP28(R17), 1, 11, 12, 14, 15, 16, 18, 3, 5, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.06, DSS06.10, 3.4.5, CCI-000213, 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii), 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, A.18.1.4, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, CM-6(a), PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.PT-3, FIA_UAU.1, SRG-OS-000080-GPOS-00048, SLES-12-010430, 1.4.1, SV-217144r603262_rule | |
|
Group
UEFI GRUB2 bootloader configuration
Group contains 1 rule |
[ref]
UEFI GRUB2 bootloader configuration |
Rule
Set the UEFI Boot Loader Password
[ref] | The grub2 boot loader should have a superuser account and password
protection enabled to protect boot-time settings.
Since plaintext passwords are a security risk, generate a hash for the password
by running the following command:
# grub2-mkpasswd-pbkdf2
When prompted, enter the password that was selected.
Using the hash from the output, modify the /etc/grub.d/40_custom
file with the following content:
set superusers="boot"
password_pbkdf2 boot grub.pbkdf2.sha512.VeryLongString
NOTE: the bootloader superuser account and password MUST differ from the
root account and password.
Once the superuser password has been added,
update the
grub.cfg file by running:
grub2-mkconfig -o /boot/grub2/grub2.cfg Warning:
To prevent hard-coded passwords, automatic remediation of this control is not available. Remediation
must be automated as a component of machine provisioning, or followed manually as outlined above.
Also, do NOT manually add the superuser account and password to the
grub.cfg file as the grub2-mkconfig command overwrites this file. | Rationale: | Password protection on the boot loader configuration ensures
users with physical access cannot trivially alter
important bootloader settings. These include which kernel to use,
and whether to enter single-user mode. | Severity: | high | Rule ID: | xccdf_org.ssgproject.content_rule_grub2_uefi_password | Identifiers and References | Identifiers:
CCE-83045-5 References:
BP28(R17), 11, 12, 14, 15, 16, 18, 3, 5, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.03, DSS06.06, 3.4.5, CCI-000213, 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii), 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, A.6.1.2, A.7.1.1, A.9.1.2, A.9.2.1, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-6(a), PR.AC-4, PR.AC-6, PR.PT-3, FIA_UAU.1, SRG-OS-000080-GPOS-00048, SLES-12-010440, 1.4.1, SV-217145r603262_rule | |
|
Group
Configure Syslog
Group contains 2 rules |
[ref]
The syslog service has been the default Unix logging mechanism for
many years. It has a number of downsides, including inconsistent log format,
lack of authentication for received messages, and lack of authentication,
encryption, or reliable transport for messages sent over a network. However,
due to its long history, syslog is a de facto standard which is supported by
almost all Unix applications.
In SUSE Linux Enterprise 12, rsyslog has replaced ksyslogd as the
syslog daemon of choice, and it includes some additional security features
such as reliable, connection-oriented (i.e. TCP) transmission of logs, the
option to log to database formats, and the encryption of log data en route to
a central logging server.
This section discusses how to configure rsyslog for
best effect, and how to use tools provided with the system to maintain and
monitor logs. |
Rule
Ensure rsyslog is Installed
[ref] | Rsyslog is installed by default. The rsyslog package can be installed with the following command: $ sudo zypper install rsyslog | Rationale: | The rsyslog package provides the rsyslog daemon, which provides
system logging services. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_rsyslog_installed | Identifiers and References | Identifiers:
CCE-91455-6 References:
BP28(R5), NT28(R46), 1, 14, 15, 16, 3, 5, 6, APO11.04, BAI03.05, DSS05.04, DSS05.07, MEA02.01, CCI-001311, CCI-001312, CCI-000366, 164.312(a)(2)(ii), 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, CM-6(a), PR.PT-1, FTP_ITC_EXT.1.1, SRG-OS-000479-GPOS-00224, SRG-OS-000051-GPOS-00024, SRG-OS-000480-GPOS-00227, 4.2.1.1 | |
|
Rule
Enable rsyslog Service
[ref] | The rsyslog service provides syslog-style logging by default on SUSE Linux Enterprise 12.
The rsyslog service can be enabled with the following command:
$ sudo systemctl enable rsyslog.service | Rationale: | The rsyslog service must be running in order to provide
logging services, which are essential to system administration. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_rsyslog_enabled | Identifiers and References | Identifiers:
CCE-91460-6 References:
BP28(R5), NT28(R46), 1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO13.01, BAI03.05, BAI04.04, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, CCI-001311, CCI-001312, CCI-001557, CCI-001851, CCI-000366, 164.312(a)(2)(ii), 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2, SR 7.1, SR 7.2, A.12.1.3, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2, A.17.2.1, CM-6(a), AU-4(1), DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.DS-4, PR.PT-1, SRG-OS-000480-GPOS-00227, 4.2.1.2 | |
|
Group
Network Configuration and Firewalls
Group contains 7 groups and 25 rules |
[ref]
Most systems must be connected to a network of some
sort, and this brings with it the substantial risk of network
attack. This section discusses the security impact of decisions
about networking which must be made when configuring a system.
This section also discusses firewalls, network access
controls, and other network security frameworks, which allow
system-level rules to be written that can limit an attackers' ability
to connect to your system. These rules can specify that network
traffic should be allowed or denied from certain IP addresses,
hosts, and networks. The rules can also specify which of the
system's network services are available to particular hosts or
networks. |
Group
iptables and ip6tables
Group contains 1 group and 2 rules |
[ref]
A host-based firewall called netfilter is included as
part of the Linux kernel distributed with the system. It is
activated by default. This firewall is controlled by the program
iptables , and the entire capability is frequently referred to by
this name. An analogous program called ip6tables handles filtering
for IPv6.
Unlike TCP Wrappers, which depends on the network server
program to support and respect the rules written, netfilter
filtering occurs at the kernel level, before a program can even
process the data from the network packet. As such, any program on
the system is affected by the rules written.
This section provides basic information about strengthening
the iptables and ip6tables configurations included with the system.
For more complete information that may allow the construction of a
sophisticated ruleset tailored to your environment, please consult
the references at the end of this section. |
Group
Inspect and Activate Default Rules
Group contains 1 rule |
[ref]
View the currently-enforced iptables rules by running
the command:
$ sudo iptables -nL --line-numbers
The command is analogous for ip6tables .
If the firewall does not appear to be active (i.e., no rules
appear), activate it and ensure that it starts at boot by issuing
the following commands (and analogously for ip6tables ):
$ sudo service iptables restart
The default iptables rules are:
Chain INPUT (policy ACCEPT)
num target prot opt source destination
1 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
2 ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0
3 ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
4 ACCEPT tcp -- 0.0.0.0/0 0.0.0.0/0 state NEW tcp dpt:22
5 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited
Chain FORWARD (policy ACCEPT)
num target prot opt source destination
1 REJECT all -- 0.0.0.0/0 0.0.0.0/0 reject-with icmp-host-prohibited
Chain OUTPUT (policy ACCEPT)
num target prot opt source destination
The ip6tables default rules are essentially the same. |
Rule
Verify iptables Enabled
[ref] |
The iptables service can be enabled with the following command:
$ sudo systemctl enable iptables.service | Rationale: | The iptables service provides the system's host-based firewalling
capability for IPv4 and ICMP. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_service_iptables_enabled | Identifiers and References | References:
1, 11, 12, 13, 14, 15, 16, 18, 3, 4, 6, 8, 9, APO01.06, APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.06, 4.2.3.4, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.5.1, A.12.6.2, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CIP-003-8 R4, CIP-003-8 R5, CIP-004-6 R3, AC-4, CM-7(b), CA-3(5), SC-7(21), CM-6(a), DE.AE-1, ID.AM-3, PR.AC-5, PR.DS-5, PR.IP-1, PR.PT-3, PR.PT-4, 3.5.1.1 | |
|
Rule
Install iptables Package
[ref] | The iptables package can be installed with the following command:
$ sudo zypper install iptables | Rationale: | iptables controls the Linux kernel network packet filtering
code. iptables allows system operators to set up firewalls and IP
masquerading, etc.
| Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_package_iptables_installed | Identifiers and References | References:
CM-6(a), SRG-OS-000480-GPOS-00227, 3.5.1.1 | |
|
Group
IPv6
Group contains 1 group and 7 rules |
[ref]
The system includes support for Internet Protocol
version 6. A major and often-mentioned improvement over IPv4 is its
enormous increase in the number of available addresses. Another
important feature is its support for automatic configuration of
many network settings. |
Group
Configure IPv6 Settings if Necessary
Group contains 7 rules |
[ref]
A major feature of IPv6 is the extent to which systems
implementing it can automatically configure their networking
devices using information from the network. From a security
perspective, manually configuring important configuration
information is preferable to accepting it from the network
in an unauthenticated fashion. |
Rule
Configure Accepting Router Advertisements on All IPv6 Interfaces
[ref] | To set the runtime status of the net.ipv6.conf.all.accept_ra kernel parameter, run the following command: $ sudo sysctl -w net.ipv6.conf.all.accept_ra=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv6.conf.all.accept_ra = 0 | Rationale: | An illicit router advertisement message could result in a man-in-the-middle attack. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv6_conf_all_accept_ra | Identifiers and References | References:
11, 14, 3, 9, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06, 3.1.20, CCI-000366, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2, CM-7(a), CM-7(b), CM-6(a), PR.IP-1, PR.PT-3, SRG-OS-000480-GPOS-00227, 3.3.9 | |
|
Rule
Disable Accepting ICMP Redirects for All IPv6 Interfaces
[ref] | To set the runtime status of the net.ipv6.conf.all.accept_redirects kernel parameter, run the following command: $ sudo sysctl -w net.ipv6.conf.all.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv6.conf.all.accept_redirects = 0 | Rationale: | An illicit ICMP redirect message could result in a man-in-the-middle attack. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv6_conf_all_accept_redirects | Identifiers and References | Identifiers:
CCE-83246-9 References:
BP28(R22), 11, 14, 3, 9, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06, 3.1.20, CCI-000366, CCI-001551, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2, CM-7(a), CM-7(b), CM-6(a), CM-6(b), CM-6.1(iv), PR.IP-1, PR.PT-3, SRG-OS-000480-GPOS-00227, SLES-12-030363, 3.3.2, SV-237621r646826_rule | |
|
Rule
Disable Kernel Parameter for Accepting Source-Routed Packets on all IPv6 Interfaces
[ref] | To set the runtime status of the net.ipv6.conf.all.accept_source_route kernel parameter, run the following command: $ sudo sysctl -w net.ipv6.conf.all.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv6.conf.all.accept_source_route = 0 | Rationale: | Source-routed packets allow the source of the packet to suggest routers
forward the packet along a different path than configured on the router, which can
be used to bypass network security measures. This requirement applies only to the
forwarding of source-routerd traffic, such as when IPv6 forwarding is enabled and
the system is functioning as a router.
Accepting source-routed packets in the IPv6 protocol has few legitimate
uses. It should be disabled unless it is absolutely required. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv6_conf_all_accept_source_route | Identifiers and References | Identifiers:
CCE-83078-6 References:
BP28(R22), 1, 12, 13, 14, 15, 16, 18, 4, 6, 8, 9, APO01.06, APO13.01, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.07, DSS06.02, 3.1.20, CCI-000366, 4.2.3.4, 4.3.3.4, 4.4.3.3, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-7(a), CM-7(b), CM-6(a), DE.AE-1, ID.AM-3, PR.AC-5, PR.DS-5, PR.PT-4, SRG-OS-000480-GPOS-00227, SLES-12-030361, 3.3.1, SV-217288r603262_rule | |
|
Rule
Disable Kernel Parameter for IPv6 Forwarding
[ref] | To set the runtime status of the net.ipv6.conf.all.forwarding kernel parameter, run the following command: $ sudo sysctl -w net.ipv6.conf.all.forwarding=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv6.conf.all.forwarding = 0 | Rationale: | IP forwarding permits the kernel to forward packets from one network
interface to another. The ability to forward packets between two networks is
only appropriate for systems acting as routers. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv6_conf_all_forwarding | Identifiers and References | Identifiers:
CCE-83247-7 References:
1, 11, 12, 13, 14, 15, 16, 2, 3, 7, 8, 9, APO13.01, BAI04.04, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS03.05, DSS05.02, DSS05.05, DSS05.07, DSS06.06, CCI-000366, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 6.2, SR 7.1, SR 7.2, SR 7.6, A.12.1.2, A.12.1.3, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.17.2.1, A.9.1.2, CM-7(a), CM-7(b), CM-6(a), CM-6(b), CM-6.1(iv), DE.CM-1, PR.DS-4, PR.IP-1, PR.PT-3, SRG-OS-000480-GPOS-00227, SLES-12-030364, 3.2.1, SV-237622r646829_rule | |
|
Rule
Disable Accepting Router Advertisements on all IPv6 Interfaces by Default
[ref] | To set the runtime status of the net.ipv6.conf.default.accept_ra kernel parameter, run the following command: $ sudo sysctl -w net.ipv6.conf.default.accept_ra=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv6.conf.default.accept_ra = 0 | Rationale: | An illicit router advertisement message could result in a man-in-the-middle attack. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv6_conf_default_accept_ra | Identifiers and References | References:
11, 14, 3, 9, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06, 3.1.20, CCI-000366, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2, CM-7(a), CM-7(b), CM-6(a), PR.IP-1, PR.PT-3, SRG-OS-000480-GPOS-00227, 3.3.9 | |
|
Rule
Disable Kernel Parameter for Accepting ICMP Redirects by Default on IPv6 Interfaces
[ref] | To set the runtime status of the net.ipv6.conf.default.accept_redirects kernel parameter, run the following command: $ sudo sysctl -w net.ipv6.conf.default.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv6.conf.default.accept_redirects = 0 | Rationale: | An illicit ICMP redirect message could result in a man-in-the-middle attack. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv6_conf_default_accept_redirects | Identifiers and References | Identifiers:
CCE-83223-8 References:
BP28(R22), 11, 14, 3, 9, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS06.06, 3.1.20, CCI-000366, CCI-001551, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.9.1.2, CM-6(b), CM-6.1(iv), PR.IP-1, PR.PT-3, SRG-OS-000480-GPOS-00227, SLES-12-030401, 3.3.2, SV-217293r603262_rule | |
|
Rule
Disable Kernel Parameter for Accepting Source-Routed Packets on IPv6 Interfaces by Default
[ref] | To set the runtime status of the net.ipv6.conf.default.accept_source_route kernel parameter, run the following command: $ sudo sysctl -w net.ipv6.conf.default.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv6.conf.default.accept_source_route = 0 | Rationale: | Source-routed packets allow the source of the packet to suggest routers
forward the packet along a different path than configured on the router, which can
be used to bypass network security measures. This requirement applies only to the
forwarding of source-routerd traffic, such as when IPv6 forwarding is enabled and
the system is functioning as a router.
Accepting source-routed packets in the IPv6 protocol has few legitimate
uses. It should be disabled unless it is absolutely required. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv6_conf_default_accept_source_route | Identifiers and References | Identifiers:
CCE-83227-9 References:
BP28(R22), 1, 12, 13, 14, 15, 16, 18, 4, 6, 8, 9, APO01.06, APO13.01, DSS01.05, DSS03.01, DSS05.02, DSS05.04, DSS05.07, DSS06.02, 3.1.20, CCI-000366, 4.2.3.4, 4.3.3.4, 4.4.3.3, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 7.1, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-7(a), CM-7(b), CM-6(a), CM-6(b), CM-6.1(iv), DE.AE-1, ID.AM-3, PR.AC-5, PR.DS-5, PR.PT-4, SRG-OS-000480-GPOS-00227, SLES-12-030362, 3.3.1, SV-237620r646823_rule | |
|
Group
Kernel Parameters Which Affect Networking
Group contains 2 groups and 16 rules |
[ref]
The sysctl utility is used to set
parameters which affect the operation of the Linux kernel. Kernel parameters
which affect networking and have security implications are described here. |
Group
Network Related Kernel Runtime Parameters for Hosts and Routers
Group contains 13 rules |
[ref]
Certain kernel parameters should be set for systems which are
acting as either hosts or routers to improve the system's ability defend
against certain types of IPv4 protocol attacks. |
Rule
Disable Accepting ICMP Redirects for All IPv4 Interfaces
[ref] | To set the runtime status of the net.ipv4.conf.all.accept_redirects kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.all.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv4.conf.all.accept_redirects = 0 | Rationale: | ICMP redirect messages are used by routers to inform hosts that a more
direct route exists for a particular destination. These messages modify the
host's route table and are unauthenticated. An illicit ICMP redirect
message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be
disabled unless absolutely required." | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_accept_redirects | Identifiers and References | Identifiers:
CCE-83090-1 References:
BP28(R22), 1, 11, 12, 13, 14, 15, 16, 2, 3, 7, 8, 9, 5.10.1.1, APO13.01, BAI04.04, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS03.05, DSS05.02, DSS05.05, DSS05.07, DSS06.06, 3.1.20, CCI-000366, CCI-001503, CCI-001551, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 6.2, SR 7.1, SR 7.2, SR 7.6, A.12.1.2, A.12.1.3, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.17.2.1, A.9.1.2, CM-7(a), CM-7(b), CM-6(a), SC-7(a), DE.CM-1, PR.DS-4, PR.IP-1, PR.PT-3, SRG-OS-000480-GPOS-00227, SLES-12-030390, 3.3.2, SV-217291r603262_rule | |
|
Rule
Disable Kernel Parameter for Accepting Source-Routed Packets on all IPv4 Interfaces
[ref] | To set the runtime status of the net.ipv4.conf.all.accept_source_route kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.all.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv4.conf.all.accept_source_route = 0 | Rationale: | Source-routed packets allow the source of the packet to suggest routers
forward the packet along a different path than configured on the router,
which can be used to bypass network security measures. This requirement
applies only to the forwarding of source-routerd traffic, such as when IPv4
forwarding is enabled and the system is functioning as a router.
Accepting source-routed packets in the IPv4 protocol has few legitimate
uses. It should be disabled unless it is absolutely required. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_accept_source_route | Identifiers and References | Identifiers:
CCE-83064-6 References:
BP28(R22), 1, 11, 12, 13, 14, 15, 16, 18, 2, 3, 4, 6, 7, 8, 9, APO01.06, APO13.01, BAI04.04, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS01.05, DSS03.01, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.06, 3.1.20, CCI-000366, 4.2.3.4, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.2, SR 7.1, SR 7.2, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.1.3, A.12.5.1, A.12.6.2, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.17.2.1, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CIP-007-3 R4, CIP-007-3 R4.1, CIP-007-3 R4.2, CIP-007-3 R5.1, CM-7(a), CM-7(b), SC-5, CM-6(a), SC-7(a), DE.AE-1, DE.CM-1, ID.AM-3, PR.AC-5, PR.DS-4, PR.DS-5, PR.IP-1, PR.PT-3, PR.PT-4, SRG-OS-000480-GPOS-00227, SLES-12-030360, 3.3.1, SV-217287r603262_rule | |
|
Rule
Enable Kernel Parameter to Log Martian Packets on all IPv4 Interfaces
[ref] | To set the runtime status of the net.ipv4.conf.all.log_martians kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.all.log_martians=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv4.conf.all.log_martians = 1 | Rationale: | The presence of "martian" packets (which have impossible addresses)
as well as spoofed packets, source-routed packets, and redirects could be a
sign of nefarious network activity. Logging these packets enables this activity
to be detected. | Severity: | unknown | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_log_martians | Identifiers and References | Identifiers:
CCE-91537-1 References:
BP28(R22), 1, 11, 12, 13, 14, 15, 16, 2, 3, 7, 8, 9, APO13.01, BAI04.04, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS01.04, DSS03.05, DSS05.02, DSS05.03, DSS05.05, DSS05.07, DSS06.06, 3.1.20, CCI-000126, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.2, SR 7.1, SR 7.2, SR 7.6, A.11.2.6, A.12.1.2, A.12.1.3, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.17.2.1, A.6.2.1, A.6.2.2, A.9.1.2, CM-7(a), CM-7(b), SC-5(3)(a), DE.CM-1, PR.AC-3, PR.DS-4, PR.IP-1, PR.PT-3, PR.PT-4, SRG-OS-000480-GPOS-00227, 3.3.4 | |
|
Rule
Enable Kernel Parameter to Use Reverse Path Filtering on all IPv4 Interfaces
[ref] | To set the runtime status of the net.ipv4.conf.all.rp_filter kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.all.rp_filter=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv4.conf.all.rp_filter = 1 | Rationale: | Enabling reverse path filtering drops packets with source addresses
that should not have been able to be received on the interface they were
received on. It should not be used on systems which are routers for
complicated networks, but is helpful for end hosts and routers serving small
networks. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_rp_filter | Identifiers and References | Identifiers:
CCE-91533-0 References:
BP28(R22), 1, 12, 13, 14, 15, 16, 18, 2, 4, 6, 7, 8, 9, APO01.06, APO13.01, BAI04.04, DSS01.03, DSS01.05, DSS03.01, DSS03.05, DSS05.02, DSS05.04, DSS05.07, DSS06.02, 3.1.20, CCI-000366, CCI-001551, 4.2.3.4, 4.3.3.4, 4.4.3.3, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.2, SR 7.1, SR 7.2, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.1.3, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.17.2.1, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-7(a), CM-7(b), CM-6(a), SC-7(a), DE.AE-1, DE.CM-1, ID.AM-3, PR.AC-5, PR.DS-4, PR.DS-5, PR.PT-4, SRG-OS-000480-GPOS-00227, 3.3.7 | |
|
Rule
Disable Kernel Parameter for Accepting Secure ICMP Redirects on all IPv4 Interfaces
[ref] | To set the runtime status of the net.ipv4.conf.all.secure_redirects kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.all.secure_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv4.conf.all.secure_redirects = 0 | Rationale: | Accepting "secure" ICMP redirects (from those gateways listed as
default gateways) has few legitimate uses. It should be disabled unless it is
absolutely required. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_all_secure_redirects | Identifiers and References | Identifiers:
CCE-91535-5 References:
BP28(R22), 1, 11, 12, 13, 14, 15, 16, 18, 2, 3, 4, 6, 7, 8, 9, APO01.06, APO13.01, BAI04.04, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS01.05, DSS03.01, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.06, 3.1.20, CCI-001503, CCI-001551, 4.2.3.4, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.2, SR 7.1, SR 7.2, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.1.3, A.12.5.1, A.12.6.2, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.17.2.1, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-7(a), CM-7(b), CM-6(a), SC-7(a), DE.AE-1, DE.CM-1, ID.AM-3, PR.AC-5, PR.DS-4, PR.DS-5, PR.IP-1, PR.PT-3, PR.PT-4, SRG-OS-000480-GPOS-00227, 3.3.3 | |
|
Rule
Disable Kernel Parameter for Accepting ICMP Redirects by Default on IPv4 Interfaces
[ref] | To set the runtime status of the net.ipv4.conf.default.accept_redirects kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.default.accept_redirects=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv4.conf.default.accept_redirects = 0 | Rationale: | ICMP redirect messages are used by routers to inform hosts that a more
direct route exists for a particular destination. These messages modify the
host's route table and are unauthenticated. An illicit ICMP redirect
message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should
be disabled unless absolutely required. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_default_accept_redirects | Identifiers and References | Identifiers:
CCE-83081-0 References:
BP28(R22), 1, 11, 12, 13, 14, 15, 16, 18, 2, 3, 4, 6, 7, 8, 9, 5.10.1.1, APO01.06, APO13.01, BAI04.04, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS01.05, DSS03.01, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.06, 3.1.20, CCI-000366, CCI-001551, 4.2.3.4, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.2, SR 7.1, SR 7.2, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.1.3, A.12.5.1, A.12.6.2, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.17.2.1, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-7(a), CM-7(b), CM-6(a), SC-7(a), DE.AE-1, DE.CM-1, ID.AM-3, PR.AC-5, PR.DS-4, PR.DS-5, PR.IP-1, PR.PT-3, PR.PT-4, SRG-OS-000480-GPOS-00227, SLES-12-030400, 3.3.3, SV-217292r603262_rule | |
|
Rule
Disable Kernel Parameter for Accepting Source-Routed Packets on IPv4 Interfaces by Default
[ref] | To set the runtime status of the net.ipv4.conf.default.accept_source_route kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.default.accept_source_route=0
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv4.conf.default.accept_source_route = 0 | Rationale: | Source-routed packets allow the source of the packet to suggest routers
forward the packet along a different path than configured on the router,
which can be used to bypass network security measures.
Accepting source-routed packets in the IPv4 protocol has few legitimate
uses. It should be disabled unless it is absolutely required, such as when
IPv4 forwarding is enabled and the system is legitimately functioning as a
router. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_default_accept_source_route | Identifiers and References | Identifiers:
CCE-83079-4 References:
BP28(R22), 1, 11, 12, 13, 14, 15, 16, 18, 2, 3, 4, 6, 7, 8, 9, 5.10.1.1, APO01.06, APO13.01, BAI04.04, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS01.05, DSS03.01, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, DSS06.02, DSS06.06, 3.1.20, CCI-000366, CCI-001551, 4.2.3.4, 4.3.3.4, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, 4.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.2, SR 7.1, SR 7.2, SR 7.6, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.12.1.1, A.12.1.2, A.12.1.3, A.12.5.1, A.12.6.2, A.13.1.1, A.13.1.2, A.13.1.3, A.13.2.1, A.13.2.2, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.17.2.1, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CIP-007-3 R4, CIP-007-3 R4.1, CIP-007-3 R4.2, CIP-007-3 R5.1, CM-7(a), CM-7(b), SC-5, SC-7(a), DE.AE-1, DE.CM-1, ID.AM-3, PR.AC-5, PR.DS-4, PR.DS-5, PR.IP-1, PR.PT-3, PR.PT-4, SRG-OS-000480-GPOS-00227, SLES-12-030370, 3.3.1, SV-217289r603262_rule | |
|
Rule
Enable Kernel Paremeter to Log Martian Packets on all IPv4 Interfaces by Default
[ref] | To set the runtime status of the net.ipv4.conf.default.log_martians kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.default.log_martians=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv4.conf.default.log_martians = 1 | Rationale: | The presence of "martian" packets (which have impossible addresses)
as well as spoofed packets, source-routed packets, and redirects could be a
sign of nefarious network activity. Logging these packets enables this activity
to be detected. | Severity: | unknown | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_default_log_martians | Identifiers and References | References:
1, 11, 12, 13, 14, 15, 16, 2, 3, 7, 8, 9, APO13.01, BAI04.04, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS01.03, DSS01.04, DSS03.05, DSS05.02, DSS05.03, DSS05.05, DSS05.07, DSS06.06, 3.1.20, CCI-000126, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.2, SR 7.1, SR 7.2, SR 7.6, A.11.2.6, A.12.1.2, A.12.1.3, A.12.5.1, A.12.6.2, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.2, A.14.2.3, A.14.2.4, A.17.2.1, A.6.2.1, A.6.2.2, A.9.1.2, CM-7(a), CM-7(b), SC-5(3)(a), DE.CM-1, PR.AC-3, PR.DS-4, PR.IP-1, PR.PT-3, PR.PT-4, SRG-OS-000480-GPOS-00227, 3.3.4 | |
|
Rule
Enable Kernel Parameter to Use Reverse Path Filtering on all IPv4 Interfaces by Default
[ref] | To set the runtime status of the net.ipv4.conf.default.rp_filter kernel parameter, run the following command: $ sudo sysctl -w net.ipv4.conf.default.rp_filter=1
To make sure that the setting is persistent, add the following line to a file in the directory /etc/sysctl.d : net.ipv4.conf.default.rp_filter = 1 | Rationale: | Enabling reverse path filtering drops packets with source addresses
that should not have been able to be received on the interface they were
received on. It should not be used on systems which are routers for
complicated networks, but is helpful for end hosts and routers serving small
networks. | Severity: | medium | Rule ID: | xccdf_org.ssgproject.content_rule_sysctl_net_ipv4_conf_default_rp_filter | Identifiers and References |
|
|