Guide to the Secure Configuration of Red Hat Enterprise Linux 6

with profile Example Server Profile
This profile is an example of a customized server profile.
This guide presents a catalog of security-relevant configuration settings for Red Hat Enterprise Linux 6. It is a rendering of content structured in the eXtensible Configuration Checklist Description Format (XCCDF) in order to support security automation. The SCAP content is is available in the scap-security-guide package which is developed at https://www.open-scap.org/security-policies/scap-security-guide.

Providing system administrators with such guidance informs them how to securely configure systems under their control in a variety of network roles. Policy makers and baseline creators can use this catalog of settings, with its associated references to higher-level security control catalogs, in order to assist them in security baseline creation. This guide is a catalog, not a checklist, and satisfaction of every item is not likely to be possible or sensible in many operational scenarios. However, the XCCDF format enables granular selection and adjustment of settings, and their association with OVAL and OCIL content provides an automated checking capability. Transformations of this document, and its associated automated checking content, are capable of providing baselines that meet a diverse set of policy objectives. Some example XCCDF Profiles, which are selections of items that form checklists and can be used as baselines, are available with this guide. They can be processed, in an automated fashion, with tools that support the Security Content Automation Protocol (SCAP). The DISA STIG, which provides required settings for US Department of Defense systems, is one example of a baseline created from this guidance.

This benchmark is a direct port of a SCAP Security Guide benchmark developed for Red Hat Enterprise Linux. It has been modified through an automated process to remove specific dependencies on Red Hat Enterprise Linux and to function with Scientifc Linux. The result is a generally useful SCAP Security Guide benchmark with the following caveats:

  • Scientifc Linux is not an exact copy of Red Hat Enterprise Linux. Scientific Linux is a Linux distribution produced by Fermi National Accelerator Laboratory. It is a free and open source operating system based on Red Hat Enterprise Linux and aims to be "as close to the commercial enterprise distribution as we can get it." There may be configuration differences that produce false positives and/or false negatives. If this occurs please file a bug report.
  • Scientifc Linux is derived from the free and open source software made available by Red Hat, but it is not produced, maintained or supported by Red Hat. Scientifc Linux has its own build system, compiler options, patchsets, and is a community supported, non-commercial operating system. Scientifc Linux does not inherit certifications or evaluations from Red Hat Enterprise Linux. As such, some configuration rules (such as those requiring FIPS 140-2 encryption) will continue to fail on Scientifc Linux.

Members of the Scientifc Linux community are invited to participate in OpenSCAP and SCAP Security Guide development. Bug reports and patches can be sent to GitHub: https://github.com/OpenSCAP/scap-security-guide. The mailing list is at https://fedorahosted.org/mailman/listinfo/scap-security-guide.

Do not attempt to implement any of the settings in this guide without first testing them in a non-operational environment. The creators of this guidance assume no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any other characteristic.
Profile TitleExample Server Profile
Profile IDxccdf_org.ssgproject.content_profile_CS2

Revision History

Current version: 0.1.41

  • draft (as of 2018-10-09)

Platforms

  • cpe:/o:redhat:enterprise_linux:6
  • cpe:/o:scientificlinux:scientificlinux:6
  • cpe:/o:redhat:enterprise_linux:6::client
  • cpe:/o:redhat:enterprise_linux:6::computenode

Table of Contents

  1. Services
    1. Obsolete Services
    2. FTP Server
    3. SNMP Server
    4. Cron and At Daemons
    5. X Window System
    6. DNS Server
    7. LDAP
    8. Mail Server Software
    9. Samba(SMB) Microsoft Windows File Sharing Server
    10. Web Server
    11. Network Time Protocol
    12. Base Services
    13. Proxy Server
    14. DHCP
    15. IMAP and POP3 Server
    16. NFS and RPC
    17. Print Support
    18. Avahi Server
    19. SSH Server
  2. System Settings
    1. Installing and Maintaining Software
    2. Configure Syslog
    3. Network Configuration and Firewalls
    4. SELinux
    5. Set Boot Loader Password
    6. Account and Access Control
    7. System Accounting with auditd
    8. File Permissions and Masks

Checklist

contains 313 rules

Services   [ref]group

The best protection against vulnerable software is running less software. This section describes how to review the software which Red Hat Enterprise Linux 6 installs on a system and disable software which is not needed. It then enumerates the software packages installed on a default Red Hat Enterprise Linux 6 system and provides guidance about which ones can be safely disabled.

Red Hat Enterprise Linux 6 provides a convenient minimal install option that essentially installs the bare necessities for a functional system. When building Red Hat Enterprise Linux 6 systems, it is highly recommended to select the minimal packages and then build up the system from there.

contains 124 rules

Obsolete Services   [ref]group

This section discusses a number of network-visible services which have historically caused problems for system security, and for which disabling or severely limiting the service has been the best available guidance for some time. As a result of this, many of these services are not installed as part of Red Hat Enterprise Linux 6 by default.

Organizations which are running these services should switch to more secure equivalents as soon as possible. If it remains absolutely necessary to run one of these services for legacy reasons, care should be taken to restrict the service as much as possible, for instance by configuring host firewall software such as iptables to restrict access to the vulnerable service to only those remote hosts which have a known need to use it.

contains 12 rules

Rlogin, Rsh, and Rexec   [ref]group

The Berkeley r-commands are legacy services which allow cleartext remote access and have an insecure trust model.

contains 3 rules

Disable rsh Service   [ref]rule

The rsh service, which is available with the rsh-server package and runs as a service through xinetd or separately as a systemd socket, should be disabled. If using xinetd, set disable to yes in /etc/xinetd.d/rsh.

Rationale:

The rsh service uses unencrypted network communications, which means that data from the login session, including passwords and all other information transmitted during the session, can be stolen by eavesdroppers on the network.

Severity:  high

Uninstall rsh-server Package   [ref]rule

The rsh-server package can be removed with the following command:

$ sudo yum erase rsh-server

Rationale:

The rsh-server service provides unencrypted remote access service which does not provide for the confidentiality and integrity of user passwords or the remote session and has very weak authentication. If a privileged user were to login using this service, the privileged user password could be compromised. The rsh-server package provides several obsolete and insecure network services. Removing it decreases the risk of those services' accidental (or intentional) activation.

Severity:  high

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove rsh-server
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure rsh-server is removed
  package:
    name: rsh-server
    state: absent
  tags:
    - package_rsh-server_removed
    - high_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7(a)
    - DISA-STIG-RHEL-06-000213
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_rsh-server

class remove_rsh-server {
  package { 'rsh-server':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=rsh-server

Remove Rsh Trust Files   [ref]rule

The files /etc/hosts.equiv and ~/.rhosts (in each user's home directory) list remote hosts and users that are trusted by the local system when using the rshd daemon. To remove these files, run the following command to delete them from any location:

$ sudo rm /etc/hosts.equiv
$ rm ~/.rhosts

Rationale:

Trust files are convenient, but when used in conjunction with the R-services, they can allow unauthenticated access to a system.

Severity:  high

Remediation Shell script:   (show)

find /home -maxdepth 2 -type f -name .rhosts -exec rm -f '{}' \;

if [ -f /etc/hosts.equiv ]; then
	/bin/rm -f /etc/hosts.equiv
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- block:
    - name: "Detect shosts.equiv Files on the System"
      find:
          paths: /
          recurse: yes
          patterns: shosts.equiv
      check_mode: no
      register: shosts_equiv_locations

    - name: "Remove Rsh Trust Files"
      file:
          path: "{{ item.path }}"
          state: absent
      with_items: "{{ shosts_equiv_locations.files }}"
      when: shosts_equiv_locations
  tags:
    - no_rsh_trust_files
    - high_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000019

Telnet   [ref]group

The telnet protocol does not provide confidentiality or integrity for information transmitted on the network. This includes authentication information such as passwords. Organizations which use telnet should be actively working to migrate to a more secure protocol.

contains 2 rules

Disable telnet Service   [ref]rule

The telnet service configuration file /etc/xinetd.d/telnet is not created automatically. If it was created manually, check the /etc/xinetd.d/telnet file and ensure that disable = no is changed to read disable = yes as follows below:

# description: The telnet server serves telnet sessions; it uses \\
#       unencrypted username/password pairs for authentication.
service telnet
{
        flags           = REUSE
        socket_type     = stream

        wait            = no
        user            = root
        server          = /usr/sbin/in.telnetd
        log_on_failure  += USERID
        disable         = yes
}
If the /etc/xinetd.d/telnet file does not exist, make sure that the activation of the telnet service on system boot is disabled via the following command:

Rationale:

The telnet protocol uses unencrypted network communication, which means that data from the login session, including passwords and all other information transmitted during the session, can be stolen by eavesdroppers on the network. The telnet protocol is also subject to man-in-the-middle attacks.

Severity:  high

Uninstall telnet-server Package   [ref]rule

The telnet-server package can be removed with the following command:

$ sudo yum erase telnet-server

Rationale:

It is detrimental for operating systems to provide, or install by default, functionality exceeding requirements or mission objectives. These unnecessary capabilities are often overlooked and therefore may remain unsecure. They increase the risk to the platform by providing additional attack vectors.
The telnet service provides an unencrypted remote access service which does not provide for the confidentiality and integrity of user passwords or the remote session. If a privileged user were to login using this service, the privileged user password could be compromised.
Removing the telnet-server package decreases the risk of the telnet service's accidental (or intentional) activation.

Severity:  high

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove telnet-server
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure telnet-server is removed
  package:
    name: telnet-server
    state: absent
  tags:
    - package_telnet-server_removed
    - high_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7(a)
    - DISA-STIG-RHEL-06-000206
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_telnet-server

class remove_telnet-server {
  package { 'telnet-server':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=telnet-server

NIS   [ref]group

The Network Information Service (NIS), also known as 'Yellow Pages' (YP), and its successor NIS+ have been made obsolete by Kerberos, LDAP, and other modern centralized authentication services. NIS should not be used because it suffers from security problems inherent in its design, such as inadequate protection of important authentication information.

contains 2 rules

Disable ypbind Service   [ref]rule

The ypbind service, which allows the system to act as a client in a NIS or NIS+ domain, should be disabled. The ypbind service can be disabled with the following command:

$ sudo chkconfig ypbind off

Rationale:

Disabling the ypbind service ensures the system is not acting as a client in a NIS or NIS+ domain. This service should be disabled unless in use.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'ypbind' disable
/sbin/chkconfig --level 0123456 'ypbind' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service ypbind
  service:
    name: ypbind
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_ypbind_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000221

Uninstall ypserv Package   [ref]rule

The ypserv package can be removed with the following command:

$ sudo yum erase ypserv

Rationale:

The NIS service provides an unencrypted authentication service which does not provide for the confidentiality and integrity of user passwords or the remote session. Removing the ypserv package decreases the risk of the accidental (or intentional) activation of NIS or NIS+ services.

Severity:  high

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove ypserv
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure ypserv is removed
  package:
    name: ypserv
    state: absent
  tags:
    - package_ypserv_removed
    - high_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7(a)
    - DISA-STIG-RHEL-06-000220
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_ypserv

class remove_ypserv {
  package { 'ypserv':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=ypserv

TFTP Server   [ref]group

TFTP is a lightweight version of the FTP protocol which has traditionally been used to configure networking equipment. However, TFTP provides little security, and modern versions of networking operating systems frequently support configuration via SSH or other more secure protocols. A TFTP server should be run only if no more secure method of supporting existing equipment can be found.

contains 3 rules

Disable tftp Service   [ref]rule

The tftp service should be disabled. The tftp service can be disabled with the following command:

$ sudo chkconfig tftp off

Rationale:

Disabling the tftp service ensures the system is not acting as a TFTP server, which does not provide encryption or authentication.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'tftp' disable
/sbin/chkconfig --level 0123456 'tftp' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service tftp
  service:
    name: tftp
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_tftp_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000223

Uninstall tftp-server Package   [ref]rule

The tftp-server package can be removed with the following command:

 $ sudo yum erase tftp-server

Rationale:

Removing the tftp-server package decreases the risk of the accidental (or intentional) activation of tftp services.

If TFTP is required for operational support (such as transmission of router configurations), its use must be documented with the Information Systems Securty Manager (ISSM), restricted to only authorized personnel, and have access control rules established.

Severity:  high

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove tftp-server
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure tftp-server is removed
  package:
    name: tftp-server
    state: absent
  tags:
    - package_tftp-server_removed
    - high_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-6(c)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000222
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_tftp-server

class remove_tftp-server {
  package { 'tftp-server':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=tftp-server

Ensure tftp Daemon Uses Secure Mode   [ref]rule

If running the tftp service is necessary, it should be configured to change its root directory at startup. To do so, ensure /etc/xinetd.d/tftp includes -s as a command line argument, as shown in the following example (which is also the default):

server_args = -s /var/lib/tftpboot

Rationale:

Using the -s option causes the TFTP service to only serve files from the given directory. Serving files from an intentionally-specified directory reduces the risk of sharing files which should remain private.

Severity:  high

Xinetd   [ref]group

The xinetd service acts as a dedicated listener for some network services (mostly, obsolete ones) and can be used to provide access controls and perform some logging. It has been largely obsoleted by other features, and it is not installed by default. The older Inetd service is not even available as part of Red Hat Enterprise Linux 6.

contains 2 rules

Disable xinetd Service   [ref]rule

The xinetd service can be disabled with the following command:

$ sudo chkconfig xinetd off

Rationale:

The xinetd service provides a dedicated listener service for some programs, which is no longer necessary for commonly-used network services. Disabling it ensures that these uncommon services are not running, and also prevents attacks against xinetd itself.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'xinetd' disable
/sbin/chkconfig --level 0123456 'xinetd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service xinetd
  service:
    name: xinetd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_xinetd_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - NIST-800-171-3.4.7
    - DISA-STIG-RHEL-06-000203

Uninstall xinetd Package   [ref]rule

The xinetd package can be removed with the following command:

$ sudo yum erase xinetd

Rationale:

Removing the xinetd package decreases the risk of the xinetd service's accidental (or intentional) activation.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove xinetd
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure xinetd is removed
  package:
    name: xinetd
    state: absent
  tags:
    - package_xinetd_removed
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000204
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_xinetd

class remove_xinetd {
  package { 'xinetd':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=xinetd

FTP Server   [ref]group

FTP is a common method for allowing remote access to files. Like telnet, the FTP protocol is unencrypted, which means that passwords and other data transmitted during the session can be captured and that the session is vulnerable to hijacking. Therefore, running the FTP server software is not recommended.

However, there are some FTP server configurations which may be appropriate for some environments, particularly those which allow only read-only anonymous access as a means of downloading data available to the public.

contains 4 rules

Configure vsftpd to Provide FTP Service if Necessary   [ref]group

The primary vsftpd configuration file is /etc/vsftpd.conf, if that file exists, or /etc/vsftpd/vsftpd.conf if it does not.

contains 2 rules

Create Warning Banners for All FTP Users   [ref]rule

Edit the vsftpd configuration file, which resides at /etc/vsftpd/vsftpd.conf by default. Add or correct the following configuration options:

banner_file=/etc/issue

Rationale:

This setting will cause the system greeting banner to be used for FTP connections as well.

Severity:  medium

Enable Logging of All FTP Transactions   [ref]rule

Add or correct the following configuration options within the vsftpd configuration file, located at /etc/vsftpd/vsftpd.conf:

xferlog_enable=YES
xferlog_std_format=NO
log_ftp_protocol=YES

Warning:  If verbose logging to vsftpd.log is done, sparse logging of downloads to /var/log/xferlog will not also occur. However, the information about what files were downloaded is included in the information logged to vsftpd.log.
Rationale:

To trace malicious activity facilitated by the FTP service, it must be configured to ensure that all commands sent to the FTP server are logged using the verbose vsftpd log format. The default vsftpd log file is /var/log/vsftpd.log.

Severity:  unknown

Disable vsftpd if Possible   [ref]group

To minimize attack surface, disable vsftpd if at all possible.

contains 2 rules

Disable vsftpd Service   [ref]rule

The vsftpd service can be disabled with the following command:

$ sudo chkconfig vsftpd off

Rationale:

Running FTP server software provides a network-based avenue of attack, and should be disabled if not needed. Furthermore, the FTP protocol is unencrypted and creates a risk of compromising sensitive information.

Severity:  unknown

References:  2.2.9, CCI-001436, CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'vsftpd' disable
/sbin/chkconfig --level 0123456 'vsftpd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service vsftpd
  service:
    name: vsftpd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_vsftpd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Uninstall vsftpd Package   [ref]rule

The vsftpd package can be removed with the following command:

 $ sudo yum erase vsftpd

Rationale:

Removing the vsftpd package decreases the risk of its accidental activation.

Severity:  high

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove vsftpd
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure vsftpd is removed
  package:
    name: vsftpd
    state: absent
  tags:
    - package_vsftpd_removed
    - high_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-6(b)
    - NIST-800-53-CM-7
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_vsftpd

class remove_vsftpd {
  package { 'vsftpd':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=vsftpd

SNMP Server   [ref]group

The Simple Network Management Protocol allows administrators to monitor the state of network devices, including computers. Older versions of SNMP were well-known for weak security, such as plaintext transmission of the community string (used for authentication) and usage of easily-guessable choices for the community string.

contains 2 rules

Disable SNMP Server if Possible   [ref]group

The system includes an SNMP daemon that allows for its remote monitoring, though it not installed by default. If it was installed and activated but is not needed, the software should be disabled and removed.

contains 2 rules

Uninstall net-snmp Package   [ref]rule

The net-snmp package provides the snmpd service. The net-snmp package can be removed with the following command:

$ sudo yum erase net-snmp

Rationale:

If there is no need to run SNMP server software, removing the package provides a safeguard against its activation.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove net-snmp
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure net-snmp is removed
  package:
    name: net-snmp
    state: absent
  tags:
    - package_net-snmp_removed
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_net-snmp

class remove_net-snmp {
  package { 'net-snmp':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=net-snmp

Disable snmpd Service   [ref]rule

The snmpd service can be disabled with the following command:

$ sudo chkconfig snmpd off

Rationale:

Running SNMP software provides a network-based avenue of attack, and should be disabled if not needed.

Severity:  unknown

References:  2.2.14

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'snmpd' disable
/sbin/chkconfig --level 0123456 'snmpd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service snmpd
  service:
    name: snmpd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_snmpd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

Cron and At Daemons   [ref]group

The cron and at services are used to allow commands to be executed at a later time. The cron service is required by almost all systems to perform necessary maintenance tasks, while at may or may not be required on a given system. Both daemons should be configured defensively.

contains 2 rules

Enable cron Service   [ref]rule

The crond service is used to execute commands at preconfigured times. It is required by almost all systems to perform necessary maintenance tasks, such as notifying root of system activity. The crond service can be enabled with the following command:

$ sudo chkconfig --level 2345 crond on

Rationale:

Due to its usage for maintenance and security-supporting tasks, enabling the cron daemon is essential.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'crond' disable
/sbin/chkconfig --level 0123456 'crond' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Enable service crond
  service:
    name: crond
    enabled: "yes"
    state: "started"
  tags:
    - service_crond_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000224

Disable At Service (atd)   [ref]rule

The at and batch commands can be used to schedule tasks that are meant to be executed only once. This allows delayed execution in a manner similar to cron, except that it is not recurring. The daemon atd keeps track of tasks scheduled via at and batch, and executes them at the specified time. The atd service can be disabled with the following command:

$ sudo chkconfig atd off

Rationale:

The atd service could be used by an unsophisticated insider to carry out activities outside of a normal login session, which could complicate accountability. Furthermore, the need to schedule tasks with at or batch is not common.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'atd' disable
/sbin/chkconfig --level 0123456 'atd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service atd
  service:
    name: atd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_atd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000262

X Window System   [ref]group

The X Window System implementation included with the system is called X.org.

contains 2 rules

Disable X Windows   [ref]group

Unless there is a mission-critical reason for the system to run a graphical user interface, ensure X is not set to start automatically at boot and remove the X Windows software packages. There is usually no reason to run X Windows on a dedicated server system, as it increases the system's attack surface and consumes system resources. Administrators of server systems should instead login via SSH or on the text console.

contains 2 rules

Remove the X Windows Package Group   [ref]rule

By removing the xorg-x11-server-common package, the system no longer has X Windows installed. If X Windows is not installed then the system cannot boot into graphical user mode. This prevents the system from being accidentally or maliciously booted into a graphical.target mode. To do so, run the following command:

$ sudo yum groupremove "X Window System"
$ sudo yum remove xorg-x11-server-common

Rationale:

Unnecessary service packages must not be installed to decrease the attack surface of the system. X windows has a long history of security vulnerabilities and should not be installed unless approved and documented.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove xorg-x11-server-common
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure xorg-x11-server-common is removed
  package:
    name: xorg-x11-server-common
    state: absent
  tags:
    - package_xorg-x11-server-common_removed
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8).1(ii)
    - DISA-STIG-RHEL-06-000291
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_xorg-x11-server-common

class remove_xorg-x11-server-common {
  package { 'xorg-x11-server-common':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=xorg-x11-server-common

Disable X Windows Startup By Setting Runlevel   [ref]rule

Setting the system's runlevel to 3 will prevent automatic startup of the X server. To do so, ensure the following line in /etc/inittab features a 3 as shown:

id:3:initdefault:

Rationale:

Unnecessary services should be disabled to decrease the attack surface of the system.

Severity:  medium

DNS Server   [ref]group

Most organizations have an operational need to run at least one nameserver. However, there are many common attacks involving DNS server software, and this server software should be disabled on any system on which it is not needed.

contains 3 rules

Protect DNS Data from Tampering or Attack   [ref]group

This section discusses DNS configuration options which make it more difficult for attackers to gain access to private DNS data or to modify DNS data.

contains 1 rule

Disable Dynamic Updates   [ref]rule

Is there a mission-critical reason to enable the risky dynamic update functionality? If not, edit /etc/named.conf. For each zone specification, correct the following directive if necessary:

zone "example.com " IN {
  allow-update { none; };
  ...
};

Rationale:

Dynamic updates allow remote servers to add, delete, or modify any entries in your zone file. Therefore, they should be considered highly risky, and disabled unless there is a very good reason for their use. If dynamic updates must be allowed, IP-based ACLs are insufficient protection, since they are easily spoofed. Instead, use TSIG keys (see the previous section for an example), and consider using the update-policy directive to restrict changes to only the precise type of change needed.

Severity:  unknown

Disable DNS Server   [ref]group

DNS software should be disabled on any systems which does not need to be a nameserver. Note that the BIND DNS server software is not installed on Red Hat Enterprise Linux 6 by default. The remainder of this section discusses secure configuration of systems which must be nameservers.

contains 2 rules

Disable named Service   [ref]rule

The named service can be disabled with the following command:

$ sudo chkconfig named off

Rationale:

All network services involve some risk of compromise due to implementation flaws and should be disabled if possible.

Severity:  unknown

References:  2.2.8, CCI-000366, CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'named' disable
/sbin/chkconfig --level 0123456 'named' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service named
  service:
    name: named
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_named_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Uninstall bind Package   [ref]rule

The named service is provided by the bind package. The bind package can be removed with the following command:

$ sudo yum erase bind

Rationale:

If there is no need to make DNS server software available, removing it provides a safeguard against its activation.

Severity:  unknown

References:  CCI-000366, CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove bind
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure bind is removed
  package:
    name: bind
    state: absent
  tags:
    - package_bind_removed
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_bind

class remove_bind {
  package { 'bind':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=bind

LDAP   [ref]group

LDAP is a popular directory service, that is, a standardized way of looking up information from a central database. Red Hat Enterprise Linux 6 includes software that enables a system to act as both an LDAP client and server.

contains 1 rule

Configure OpenLDAP Clients   [ref]group

This section provides information on which security settings are important to configure in OpenLDAP clients by manually editing the appropriate configuration files. Red Hat Enterprise Linux 6 provides an automated configuration tool called authconfig and a graphical wrapper for authconfig called system-config-authentication. However, these tools do not provide as much control over configuration as manual editing of configuration files. The authconfig tools do not allow you to specify locations of SSL certificate files, which is useful when trying to use SSL cleanly across several protocols. Installation and configuration of OpenLDAP on Red Hat Enterprise Linux 6 is available at https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Directory_Servers.html.

Warning:  Before configuring any system to be an LDAP client, ensure that a working LDAP server is present on the network.
contains 1 rule

Configure LDAP Client to Use TLS For All Transactions   [ref]rule

This check verifies that Red Hat Enterprise Linux 6 implements cryptography to protect the integrity of remote LDAP authentication sessions.

To determine if LDAP is being used for authentication, use the following command:

$ sudo grep -i useldapauth /etc/sysconfig/authconfig


If USELDAPAUTH=yes, then LDAP is being used. To check if LDAP is configured to use TLS, use the following command:
$ sudo grep -i ssl /etc/pam_ldap.conf

Rationale:

Without cryptographic integrity protections, information can be altered by unauthorized users without detection. The ssl directive specifies whether to use TLS or not. If not specified it will default to no. It should be set to start_tls rather than doing LDAP over SSL.

Severity:  medium

Remediation Shell script:   (show)



# Use LDAP for authentication
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysconfig/authconfig' 'USELDAPAUTH' 'yes' '' '%s=%s'

# Configure client to use TLS for all authentications
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/nslcd.conf' 'ssl' 'start_tls' '' '%s %s'

Mail Server Software   [ref]group

Mail servers are used to send and receive email over the network. Mail is a very common service, and Mail Transfer Agents (MTAs) are obvious targets of network attack. Ensure that systems are not running MTAs unnecessarily, and configure needed MTAs as defensively as possible.

Very few systems at any site should be configured to directly receive email over the network. Users should instead use mail client programs to retrieve email from a central server that supports protocols such as IMAP or POP3. However, it is normal for most systems to be independently capable of sending email, for instance so that cron jobs can report output to an administrator. Most MTAs, including Postfix, support a submission-only mode in which mail can be sent from the local system to a central site MTA (or directly delivered to a local account), but the system still cannot receive mail directly over a network.

The alternatives program in Red Hat Enterprise Linux permits selection of other mail server software (such as Sendmail), but Postfix is the default and is preferred. Postfix was coded with security in mind and can also be more effectively contained by SELinux as its modular design has resulted in separate processes performing specific actions. More information is available on its website, http://www.postfix.org.

contains 2 rules

Uninstall Sendmail Package   [ref]rule

Sendmail is not the default mail transfer agent and is not installed by default. The sendmail package can be removed with the following command:

$ sudo yum erase sendmail

Rationale:

The sendmail software was not developed with security in mind and its design prevents it from being effectively contained by SELinux. Postfix should be used instead.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove sendmail
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure sendmail is removed
  package:
    name: sendmail
    state: absent
  tags:
    - package_sendmail_removed
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000288
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_sendmail

class remove_sendmail {
  package { 'sendmail':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=sendmail

Enable Postfix Service   [ref]rule

The Postfix mail transfer agent is used for local mail delivery within the system. The default configuration only listens for connections to the default SMTP port (port 25) on the loopback interface (127.0.0.1). It is recommended to leave this service enabled for local mail delivery. The postfix service can be enabled with the following command:

$ sudo chkconfig --level 2345 postfix on

Rationale:

Local mail delivery is essential to some system maintenance and notification tasks.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'postfix' disable
/sbin/chkconfig --level 0123456 'postfix' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Enable service postfix
  service:
    name: postfix
    enabled: "yes"
    state: "started"
  tags:
    - service_postfix_enabled
    - unknown_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - DISA-STIG-RHEL-06-000287

Samba(SMB) Microsoft Windows File Sharing Server   [ref]group

When properly configured, the Samba service allows Linux systems to provide file and print sharing to Microsoft Windows systems. There are two software packages that provide Samba support. The first, samba-client, provides a series of command line tools that enable a client system to access Samba shares. The second, simply labeled samba, provides the Samba service. It is this second package that allows a Linux system to act as an Active Directory server, a domain controller, or as a domain member. Only the samba-client package is installed by default.

contains 4 rules

Disable Samba if Possible   [ref]group

Even after the Samba server package has been installed, it will remain disabled. Do not enable this service unless it is absolutely necessary to provide Microsoft Windows file and print sharing functionality.

contains 1 rule

Disable Samba   [ref]rule

The smb service can be disabled with the following command:

$ sudo chkconfig smb off

Rationale:

Running a Samba server provides a network-based avenue of attack, and should be disabled if not needed.

Severity:  unknown

References:  2.2.12, CCI-001436

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'smb' disable
/sbin/chkconfig --level 0123456 'smb' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service smb
  service:
    name: smb
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_smb_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

Configure Samba if Necessary   [ref]group

All settings for the Samba daemon can be found in /etc/samba/smb.conf. Settings are divided between a [global] configuration section and a series of user created share definition sections meant to describe file or print shares on the system. By default, Samba will operate in user mode and allow client systems to access local home directories and printers. It is recommended that these settings be changed or that additional limitations be set in place.

contains 3 rules

Disable Root Access to SMB Shares   [ref]rule

Administrators should not use administrator accounts to access Samba file and printer shares. Disable the root user and the wheel administrator group:

[share]
  invalid users = root @wheel
If administrator accounts cannot be disabled, ensure that local system passwords and Samba service passwords do not match.

Rationale:

Typically, administrator access is required when Samba must create user and system accounts and shares. Domain member servers and standalone servers may not need administrator access at all. If that is the case, add the invalid users parameter to [global] instead.

Severity:  unknown

Require Client SMB Packet Signing, if using smbclient   [ref]rule

To require samba clients running smbclient to use packet signing, add the following to the [global] section of the Samba configuration file, /etc/samba/smb.conf:

client signing = mandatory
Requiring samba clients such as smbclient to use packet signing ensures they can only communicate with servers that support packet signing.

Rationale:

Packet signing can prevent man-in-the-middle attacks which modify SMB packets in transit.

Severity:  unknown

Remediation Shell script:   (show)

######################################################################
#By Luke "Brisk-OH" Brisk
#luke.brisk@boeing.com or luke.brisk@gmail.com
######################################################################

CLIENTSIGNING=$( grep -ic 'client signing' /etc/samba/smb.conf )

if [ "$CLIENTSIGNING" -eq 0 ];  then
	# Add to global section
	sed -i 's/\[global\]/\[global\]\n\n\tclient signing = mandatory/g' /etc/samba/smb.conf
else
	sed -i 's/[[:blank:]]*client[[:blank:]]signing[[:blank:]]*=[[:blank:]]*no/        client signing = mandatory/g' /etc/samba/smb.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Strategy:configure
- name: Check if /etc/samba/smb.conf exists
  stat:
    path: /etc/samba/smb.conf
  register: st_smb
  tags:
    - require_smb_client_signing
    - unknown_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - DISA-STIG-RHEL-06-000272

- name: Require Client SMB Packet Signing, if using smbclient
  lineinfile:
    dest: /etc/samba/smb.conf
    line: client signing = mandatory
    state: present
    insertafter: [global]
  when: st_smb.stat.exists
  tags:
    - require_smb_client_signing
    - unknown_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - DISA-STIG-RHEL-06-000272

Require Client SMB Packet Signing, if using mount.cifs   [ref]rule

Require packet signing of clients who mount Samba shares using the mount.cifs program (e.g., those who specify shares in /etc/fstab). To do so, ensure signing options (either sec=krb5i or sec=ntlmv2i) are used.

See the mount.cifs(8) man page for more information. A Samba client should only communicate with servers who can support SMB packet signing.

Rationale:

Packet signing can prevent man-in-the-middle attacks which modify SMB packets in transit.

Severity:  unknown

Web Server   [ref]group

The web server is responsible for providing access to content via the HTTP protocol. Web servers represent a significant security risk because:

  • The HTTP port is commonly probed by malicious sources
  • Web server software is very complex, and includes a long history of vulnerabilities
  • The HTTP protocol is unencrypted and vulnerable to passive monitoring


The system's default web server software is Apache 2 and is provided in the RPM package httpd.

contains 22 rules

Disable Apache if Possible   [ref]group

If Apache was installed and activated, but the system does not need to act as a web server, then it should be disabled and removed from the system.

contains 1 rule

Uninstall httpd Package   [ref]rule

The httpd package can be removed with the following command:

 $ sudo yum erase httpd

Rationale:

If there is no need to make the web server software available, removing it provides a safeguard against its activation.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove httpd
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure httpd is removed
  package:
    name: httpd
    state: absent
  tags:
    - package_httpd_removed
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_httpd

class remove_httpd {
  package { 'httpd':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=httpd

Secure Apache Configuration   [ref]group

The httpd configuration file is /etc/httpd/conf/httpd.conf. Apply the recommendations in the remainder of this section to this file.

contains 21 rules

Restrict Web Server Information Leakage   [ref]group

The ServerTokens and ServerSignature directives determine how much information the web server discloses about the configuration of the system.

contains 1 rule

Set httpd ServerTokens Directive to Prod   [ref]rule

ServerTokens Prod restricts information in page headers, returning only the word "Apache."

Add or correct the following directive in /etc/httpd/conf/httpd.conf:

ServerTokens Prod

Rationale:

Information disclosed to clients about the configuration of the web server and system could be used to plan an attack on the given system. This information disclosure should be restricted to a minimum.

Severity:  unknown

References:  CM-7

Configure Operating System to Protect Web Server   [ref]group

The following configuration steps should be taken on the system which hosts the web server, in order to provide as safe an environment as possible for the web server.

contains 2 rules

Restrict File and Directory Access   [ref]group

Minimize access to critical httpd files and directories.

contains 2 rules

Set Permissions on the /etc/httpd/conf/ Directory   [ref]rule

To properly set the permissions of /etc/http/conf, run the command:

$ sudo chmod 0750 /etc/http/conf

Rationale:

Access to the web server's configuration files may allow an unauthorized user or attacker to access information about the web server or alter the server's configuration files.

Severity:  unknown

Set Permissions on All Configuration Files Inside /etc/httpd/conf/   [ref]rule

To properly set the permissions of /etc/http/conf/*, run the command:

$ sudo chmod 0640 /etc/http/conf/*

Rationale:

Access to the web server's configuration files may allow an unauthorized user or attacker to access information about the web server or to alter the server's configuration files.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:configure

chmod 0640 /etc/httpd/conf/*
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:configure
- name: Ensure permission 0640 on /etc/httpd/conf/*
  file:
    path: /etc/httpd/conf/*
    mode: 0640
  tags:
    - file_permissions_httpd_server_conf_files
    - unknown_severity
    - configure_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Use Appropriate Modules to Improve httpd's Security   [ref]group

Among the modules available for httpd are several whose use may improve the security of the web server installation. This section recommends and discusses the deployment of security-relevant modules.

contains 2 rules

Deploy mod_security   [ref]group

The security module provides an application level firewall for httpd. Following its installation with the base ruleset, specific configuration advice can be found at http://www.modsecurity.org/ to design a policy that best matches the security needs of the web applications. Usage of mod_security is highly recommended for some environments, but it should be noted this module does not ship with Red Hat Enterprise Linux itself, and instead is provided via Extra Packages for Enterprise Linux (EPEL). For more information on EPEL please refer to http://fedoraproject.org/wiki/EPEL.

contains 1 rule

Install mod_security   [ref]rule

Install the security module: The mod_security package can be installed with the following command:

$ sudo yum install mod_security

Rationale:

mod_security provides an additional level of protection for the web server by enabling the administrator to implement content access policies and filters at the application layer.

Severity:  unknown

Deploy mod_ssl   [ref]group

Because HTTP is a plain text protocol, all traffic is susceptible to passive monitoring. If there is a need for confidentiality, SSL should be configured and enabled to encrypt content.

Note: mod_nss is a FIPS 140-2 certified alternative to mod_ssl. The modules share a considerable amount of code and should be nearly identical in functionality. If FIPS 140-2 validation is required, then mod_nss should be used. If it provides some feature or its greater compatibility is required, then mod_ssl should be used.

contains 1 rule

Install mod_ssl   [ref]rule

Install the mod_ssl module: The mod_ssl package can be installed with the following command:

$ sudo yum install mod_ssl

Rationale:

mod_ssl provides encryption capabilities for the httpd Web server. Unencrypted content is transmitted in plain text which could be passively monitored and accessed by unauthorized parties.

Severity:  unknown

Directory Restrictions   [ref]group

The Directory tags in the web server configuration file allow finer grained access control for a specified directory. All web directories should be configured on a case-by-case basis, allowing access only where needed.

contains 4 rules

Restrict Web Directory   [ref]rule

The default configuration for the web (/var/www/html) Directory allows directory indexing (Indexes) and the following of symbolic links (FollowSymLinks). Neither of these is recommended.

The /var/www/html directory hierarchy should not be viewable via the web, and symlinks should only be followed if the owner of the symlink also owns the linked file.

Ensure that this policy is adhered to by altering the related section of the configuration:

<Directory "/var/www/html">
#  ...
   Options SymLinksIfOwnerMatch
#  ...
</Directory>

Rationale:

Access to the web server's directory hierarchy could allow access to unauthorized files by web clients. Following symbolic links could also allow such access.

Severity:  unknown

Restrict Other Critical Directories   [ref]rule

All accessible web directories should be configured with similarly restrictive settings. The Options directive should be limited to necessary functionality and the AllowOverride directive should be used only if needed. The Order and Deny access control tags should be used to deny access by default, allowing access only where necessary.

Rationale:

Directories accessible from a web client should be configured with the least amount of access possible in order to avoid unauthorized access to restricted content or server information.

Severity:  unknown

Restrict Root Directory   [ref]rule

The httpd root directory should always have the most restrictive configuration enabled.

<Directory / >
   Options None
   AllowOverride None
   Order allow,deny
</Directory>

Rationale:

The Web Server's root directory content should be protected from unauthorized access by web clients.

Severity:  unknown

Limit Available Methods   [ref]rule

Web server methods are defined in section 9 of RFC 2616 ( http://www.ietf.org/rfc/rfc2616.txt). If a web server does not require the implementation of all available methods, they should be disabled.

Note: GET and POST are the most common methods. A majority of the others are limited to the WebDAV protocol.

<Directory /var/www/html>
# ...
   # Only allow specific methods (this command is case-sensitive!)
   <LimitExcept GET POST>
      Order allow,deny
   </LimitExcept>
# ...
</Directory>

Rationale:

Minimizing the number of available methods to the web client reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Minimize Web Server Loadable Modules   [ref]group

A default installation of httpd includes a plethora of dynamically shared objects (DSO) that are loaded at run-time. Unlike the aforementioned compiled-in modules, a DSO can be disabled in the configuration file by removing the corresponding LoadModule directive.

Note: A DSO only provides additional functionality if associated directives are included in the httpd configuration file. It should also be noted that removing a DSO will produce errors on httpd startup if the configuration file contains directives that apply to that module. Refer to http://httpd.apache.org/docs/ for details on which directives are associated with each DSO.

Following each DSO removal, the configuration can be tested with the following command to check if everything still works:

$ sudo service httpd configtest
The purpose of each of the modules loaded by default will now be addressed one at a time. If none of a module's directives are being used, remove it.

contains 12 rules

httpd Core Modules   [ref]group

These modules comprise a basic subset of modules that are likely needed for base httpd functionality; ensure they are not commented out in /etc/httpd/conf/httpd.conf:

LoadModule auth_basic_module modules/mod_auth_basic.so
LoadModule authn_default_module modules/mod_authn_default.so
LoadModule authz_host_module modules/mod_authz_host.so
LoadModule authz_user_module modules/mod_authz_user.so
LoadModule authz_groupfile_module modules/mod_authz_groupfile.so
LoadModule authz_default_module modules/mod_authz_default.so
LoadModule log_config_module modules/mod_log_config.so
LoadModule logio_module modules/mod_logio.so
LoadModule setenvif_module modules/mod_setenvif.so
LoadModule mime_module modules/mod_mome.so
LoadModule autoindex_module modules/mod_autoindex.so
LoadModule negotiation_module modules/mod_negotiation.so
LoadModule dir_module modules/mod_dir.so
LoadModule alias_module modules/mod_alias.so
Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

contains 12 rules

Disable LDAP Support   [ref]rule

The ldap module provides HTTP authentication via an LDAP directory. If its functionality is unnecessary, comment out the related modules:

#LoadModule ldap_module modules/mod_ldap.so
#LoadModule authnz_ldap_module modules/mod_authnz_ldap.so
If LDAP is to be used, SSL encryption should be used as well.

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable CGI Support   [ref]rule

The cgi module allows HTML to interact with the CGI web programming language.

If this functionality is unnecessary, comment out the module:

#LoadModule cgi_module modules/mod_cgi.so
If the web server requires the use of CGI, enable mod_cgi.

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable URL Correction on Misspelled Entries   [ref]rule

The speling module attempts to find a document match by allowing one misspelling in an otherwise failed request. If this functionality is unnecessary, comment out the module:

#LoadModule speling_module modules/mod_speling.so
This functionality weakens server security by making site enumeration easier.

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable Server Activity Status   [ref]rule

The status module provides real-time access to statistics on the internal operation of the web server. This may constitute an unnecessary information leak and should be disabled unless necessary. To do so, comment out the related module:

#LoadModule status_module modules/mod_status.so
If there is a critical need for this module, ensure that access to the status page is properly restricted to a limited set of hosts in the status handler configuration.

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable HTTP Digest Authentication   [ref]rule

The auth_digest module provides encrypted authentication sessions. If this functionality is unnecessary, comment out the related module:

#LoadModule auth_digest_module modules/mod_auth_digest.so

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable WebDAV (Distributed Authoring and Versioning)   [ref]rule

WebDAV is an extension of the HTTP protocol that provides distributed and collaborative access to web content. If its functionality is unnecessary, comment out the related modules:

#LoadModule dav_module modules/mod_dav.so
#LoadModule dav_fs_module modules/mod_dav_fs.so
If there is a critical need for WebDAV, extra care should be taken in its configuration. Since DAV access allows remote clients to manipulate server files, any location on the server that is DAV enabled should be protected by access controls.

Rationale:

Minimizing the number of loadable modules available to the web server, reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable MIME Magic   [ref]rule

The mime_magic module provides a second layer of MIME support that in most configurations is likely extraneous. If its functionality is unnecessary, comment out the related module:

#LoadModule mime_magic_module modules/mod_mime_magic.so

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable Web Server Configuration Display   [ref]rule

The info module creates a web page illustrating the configuration of the web server. This can create an unnecessary security leak and should be disabled. If its functionality is unnecessary, comment out the module:

#LoadModule info_module modules/mod_info.so
If there is a critical need for this module, use the Location directive to provide an access control list to restrict access to the information.

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable Cache Support   [ref]rule

The cache module allows httpd to cache data, optimizing access to frequently accessed content. However, it introduces potential security flaws such as the possibility of circumventing Allow and Deny directives.

If this functionality is unnecessary, comment out the module:

#LoadModule cache_module modules/mod_cache.so
If caching is required, it should not be enabled for any limited-access content.

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable HTTP mod_rewrite   [ref]rule

The mod_rewrite module is very powerful and can protect against certain classes of web attacks. However, it is also very complex and has a significant history of vulnerabilities itself. If its functionality is unnecessary, comment out the related module:

#LoadModule rewrite_module modules/mod_rewrite.so

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable Server Side Includes   [ref]rule

Server Side Includes provide a method of dynamically generating web pages through the insertion of server-side code. However, the technology is also deprecated and introduces significant security concerns. If this functionality is unnecessary, comment out the related module:

#LoadModule include_module modules/mod_include.so
If there is a critical need for Server Side Includes, they should be enabled with the option IncludesNoExec to prevent arbitrary code execution. Additionally, user supplied data should be encoded to prevent cross-site scripting vulnerabilities.

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Disable Proxy Support   [ref]rule

The proxy module provides proxying support, allowing httpd to forward requests and serve as a gateway for other servers. If its functionality is unnecessary, comment out the module:

#LoadModule proxy_module modules/mod_proxy.so
If proxy support is needed, load mod_proxy and the appropriate proxy protocol handler module (one of mod_proxy_http, mod_proxy_ftp, or mod_proxy_connect). Additionally, make certain that a server is secure before enabling proxying, as open proxy servers are a security risk. mod_proxy_balancer enables load balancing, but requires that mod status be enabled.

Rationale:

Minimizing the number of loadable modules available to the web server reduces risk by limiting the capabilities allowed by the web server.

Severity:  unknown

Network Time Protocol   [ref]group

The Network Time Protocol is used to manage the system clock over a network. Computer clocks are not very accurate, so time will drift unpredictably on unmanaged systems. Central time protocols can be used both to ensure that time is consistent among a network of systems, and that their time is consistent with the outside world.

If every system on a network reliably reports the same time, then it is much easier to correlate log messages in case of an attack. In addition, a number of cryptographic protocols (such as Kerberos) use timestamps to prevent certain types of attacks. If your network does not have synchronized time, these protocols may be unreliable or even unusable.

Depending on the specifics of the network, global time accuracy may be just as important as local synchronization, or not very important at all. If your network is connected to the Internet, using a public timeserver (or one provided by your enterprise) provides globally accurate timestamps which may be essential in investigating or responding to an attack which originated outside of your network.

A typical network setup involves a small number of internal systems operating as NTP servers, and the remainder obtaining time information from those internal servers.

There is a choice between the daemons ntpd and chronyd, which are available from the repositories in the ntp and chrony packages respectively.

The default chronyd daemon can work well when external time references are only intermittently accesible, can perform well even when the network is congested for longer periods of time, can usually synchronize the clock faster and with better time accuracy, and quickly adapts to sudden changes in the rate of the clock, for example, due to changes in the temperature of the crystal oscillator. Chronyd should be considered for all systems which are frequently suspended or otherwise intermittently disconnected and reconnected to a network. Mobile and virtual systems for example.

The ntpd NTP daemon fully supports NTP protocol version 4 (RFC 5905), including broadcast, multicast, manycast clients and servers, and the orphan mode. It also supports extra authentication schemes based on public-key cryptography (RFC 5906). The NTP daemon (ntpd) should be considered for systems which are normally kept permanently on. Systems which are required to use broadcast or multicast IP, or to perform authentication of packets with the Autokey protocol, should consider using ntpd.

Refer to https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/System_Administrators_Guide/ch-Configuring_NTP_Using_the_chrony_Suite.html for more detailed comparison of features of chronyd and ntpd daemon features respectively, and for further guidance how to choose between the two NTP daemons.

The upstream manual pages at http://chrony.tuxfamily.org/manual.html for chronyd and http://www.ntp.org for ntpd provide additional information on the capabilities and configuration of each of the NTP daemons.

contains 2 rules

Enable the NTP Daemon   [ref]rule

The ntpd service can be enabled with the following command:

$ sudo chkconfig --level 2345 ntpd on

Rationale:

Enabling the ntpd service ensures that the ntpd service will be running and that the system will synchronize its time to any servers specified. This is important whether the system is configured to be a client (and synchronize only its own clock) or it is also acting as an NTP server to other systems. Synchronizing time is essential for authentication services such as Kerberos, but it is also important for maintaining accurate logs and auditing possible security breaches.

The NTP daemon offers all of the functionality of ntpdate, which is now deprecated. Additional information on this is available at http://support.ntp.org/bin/view/Dev/DeprecatingNtpdate.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'ntpd' disable
/sbin/chkconfig --level 0123456 'ntpd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Enable service ntpd
  service:
    name: ntpd
    enabled: "yes"
    state: "started"
  tags:
    - service_ntpd_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AU-8(1)
    - PCI-DSS-Req-10.4
    - DISA-STIG-RHEL-06-000247

Specify a Remote NTP Server   [ref]rule

To specify a remote NTP server for time synchronization, edit the file /etc/ntp.conf. Add or correct the following lines, substituting the IP or hostname of a remote NTP server for ntpserver:

server ntpserver
This instructs the NTP software to contact that remote server to obtain time data.

Rationale:

Synchronizing with an NTP server makes it possible to collate system logs from multiple sources or correlate computer events with real time events.

Severity:  medium

Base Services   [ref]group

This section addresses the base services that are installed on a Red Hat Enterprise Linux 6 default installation which are not covered in other sections. Some of these services listen on the network and should be treated with particular discretion. Other services are local system utilities that may or may not be extraneous. In general, system services should be disabled if not required.

contains 22 rules

Disable Hardware Abstraction Layer Service (haldaemon)   [ref]rule

The Hardware Abstraction Layer Daemon (haldaemon) collects and maintains information about the system's hardware configuration. This service is required on a workstation running a desktop environment, and may be necessary on any system which deals with removable media or devices. The haldaemon service can be disabled with the following command:

$ sudo chkconfig haldaemon off

Rationale:

The haldaemon provides essential functionality on systems that use removable media or devices, but can be disabled for systems that do not require these.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'haldaemon' disable
/sbin/chkconfig --level 0123456 'haldaemon' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service haldaemon
  service:
    name: haldaemon
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_haldaemon_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable D-Bus IPC Service (messagebus)   [ref]rule

D-Bus provides an IPC mechanism used by a growing list of programs, such as those used for Gnome, Bluetooth, and Avahi. Due to these dependencies, disabling D-Bus may not be practical for many systems. The messagebus service can be disabled with the following command:

$ sudo chkconfig messagebus off

Rationale:

If no services which require D-Bus are needed, then it can be disabled. As a broker for IPC between processes of different privilege levels, it could be a target for attack. However, disabling D-Bus is likely to be impractical for any system which needs to provide a graphical login session.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'messagebus' disable
/sbin/chkconfig --level 0123456 'messagebus' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service messagebus
  service:
    name: messagebus
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_messagebus_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable Advanced Configuration and Power Interface (acpid)   [ref]rule

The Advanced Configuration and Power Interface Daemon (acpid) dispatches ACPI events (such as power/reset button depressed) to userspace programs. The acpid service can be disabled with the following command:

$ sudo chkconfig acpid off

Rationale:

ACPI support is highly desirable for systems in some network roles, such as laptops or desktops. For other systems, such as servers, it may permit accidental or trivially achievable denial of service situations and disabling it is appropriate.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'acpid' disable
/sbin/chkconfig --level 0123456 'acpid' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service acpid
  service:
    name: acpid
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_acpid_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable KDump Kernel Crash Analyzer (kdump)   [ref]rule

The kdump service provides a kernel crash dump analyzer. It uses the kexec system call to boot a secondary kernel ("capture" kernel) following a system crash, which can load information from the crashed kernel for analysis. The kdump service can be disabled with the following command:

$ sudo chkconfig kdump off

Rationale:

Kernel core dumps may contain the full contents of system memory at the time of the crash. Kernel core dumps consume a considerable amount of disk space and may result in denial of service by exhausting the available space on the target file system partition. Unless the system is used for kernel development or testing, there is little need to run the kdump service.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'kdump' disable
/sbin/chkconfig --level 0123456 'kdump' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service kdump
  service:
    name: kdump
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_kdump_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - NIST-800-53-CM-6(b)
Remediation Anaconda snippet:   (show)


kdump --disable

Disable CPU Speed (cpuspeed)   [ref]rule

The cpuspeed service can adjust the clock speed of supported CPUs based upon the current processing load thereby conserving power and reducing heat. The cpuspeed service can be disabled with the following command:

$ sudo chkconfig cpuspeed off

Rationale:

The cpuspeed service is only necessary if adjusting the CPU clock speed provides benefit. Traditionally this has included laptops (to enhance battery life), but may also apply to server or desktop environments where conserving power is highly desirable or necessary.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'cpuspeed' disable
/sbin/chkconfig --level 0123456 'cpuspeed' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service cpuspeed
  service:
    name: cpuspeed
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_cpuspeed_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable Network Console (netconsole)   [ref]rule

The netconsole service is responsible for loading the netconsole kernel module, which logs kernel printk messages over UDP to a syslog server. This allows debugging of problems where disk logging fails and serial consoles are impractical. The netconsole service can be disabled with the following command:

$ sudo chkconfig netconsole off

Rationale:

The netconsole service is not necessary unless there is a need to debug kernel panics, which is not common.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'netconsole' disable
/sbin/chkconfig --level 0123456 'netconsole' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service netconsole
  service:
    name: netconsole
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_netconsole_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000289

Disable Certmonger Service (certmonger)   [ref]rule

Certmonger is a D-Bus based service that attempts to simplify interaction with certifying authorities on networks which use public-key infrastructure. It is often combined with Red Hat's IPA (Identity Policy Audit) security information management solution to aid in the management of certificates. The certmonger service can be disabled with the following command:

$ sudo chkconfig certmonger off

Rationale:

The services provided by certmonger may be essential for systems fulfilling some roles a PKI infrastructure, but its functionality is not necessary for many other use cases.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'certmonger' disable
/sbin/chkconfig --level 0123456 'certmonger' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service certmonger
  service:
    name: certmonger
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_certmonger_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable Red Hat Network Service (rhnsd)   [ref]rule

The Red Hat Network service automatically queries Red Hat Network servers to determine whether there are any actions that should be executed, such as package updates. This only occurs if the system was registered to an RHN server or satellite and managed as such. The rhnsd service can be disabled with the following command:

$ sudo chkconfig rhnsd off

Rationale:

Although systems management and patching is extremely important to system security, management by a system outside the enterprise enclave is not desirable for some environments. However, if the system is being managed by RHN or RHN Satellite Server the rhnsd daemon can remain on.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'rhnsd' disable
/sbin/chkconfig --level 0123456 'rhnsd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service rhnsd
  service:
    name: rhnsd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_rhnsd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000009

Disable Software RAID Monitor (mdmonitor)   [ref]rule

The mdmonitor service is used for monitoring a software RAID array; hardware RAID setups do not use this service. The mdmonitor service can be disabled with the following command:

$ sudo chkconfig mdmonitor off

Rationale:

If software RAID monitoring is not required, there is no need to run this service.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'mdmonitor' disable
/sbin/chkconfig --level 0123456 'mdmonitor' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service mdmonitor
  service:
    name: mdmonitor
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_mdmonitor_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Enable IRQ Balance (irqbalance)   [ref]rule

The irqbalance service optimizes the balance between power savings and performance through distribution of hardware interrupts across multiple processors. The irqbalance service can be enabled with the following command:

$ sudo chkconfig --level 2345 irqbalance on

Rationale:

In an environment with multiple processors (now common), the irqbalance service provides potential speedups for handling interrupt requests.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'irqbalance' disable
/sbin/chkconfig --level 0123456 'irqbalance' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Enable service irqbalance
  service:
    name: irqbalance
    enabled: "yes"
    state: "started"
  tags:
    - service_irqbalance_enabled
    - unknown_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable Odd Job Daemon (oddjobd)   [ref]rule

The oddjobd service exists to provide an interface and access control mechanism through which specified privileged tasks can run tasks for unprivileged client applications. Communication with oddjobd through the system message bus. The oddjobd service can be disabled with the following command:

$ sudo chkconfig oddjobd off

Rationale:

The oddjobd service may provide necessary functionality in some environments, and can be disabled if it is not needed. Execution of tasks by privileged programs, on behalf of unprivileged ones, has traditionally been a source of privilege escalation security issues.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'oddjobd' disable
/sbin/chkconfig --level 0123456 'oddjobd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service oddjobd
  service:
    name: oddjobd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_oddjobd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000266

Disable Control Group Rules Engine (cgred)   [ref]rule

The cgred service moves tasks into control groups according to parameters set in the /etc/cgrules.conf configuration file. The cgred service can be disabled with the following command:

$ sudo chkconfig cgred off

Rationale:

Unless control groups are used to manage system resources, running the cgred service service is not necessary.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'cgred' disable
/sbin/chkconfig --level 0123456 'cgred' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service cgred
  service:
    name: cgred
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_cgred_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable SMART Disk Monitoring Service (smartd)   [ref]rule

SMART (Self-Monitoring, Analysis, and Reporting Technology) is a feature of hard drives that allows them to detect symptoms of disk failure and relay an appropriate warning. The smartd service can be disabled with the following command:

$ sudo chkconfig smartd off

Rationale:

SMART can help protect against denial of service due to failing hardware. Nevertheless, if it is not needed or the system's drives are not SMART-capable (such as solid state drives), it can be disabled.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'smartd' disable
/sbin/chkconfig --level 0123456 'smartd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service smartd
  service:
    name: smartd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_smartd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable Apache Qpid (qpidd)   [ref]rule

The qpidd service provides high speed, secure, guaranteed delivery services. It is an implementation of the Advanced Message Queuing Protocol. By default the qpidd service will bind to port 5672 and listen for connection attempts. The qpidd service can be disabled with the following command:

$ sudo chkconfig qpidd off

Rationale:

The qpidd service is automatically installed when the "base" package selection is selected during installation. The qpidd service listens for network connections, which increases the attack surface of the system. If the system is not intended to receive AMQP traffic, then the qpidd service is not needed and should be disabled or removed.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'qpidd' disable
/sbin/chkconfig --level 0123456 'qpidd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service qpidd
  service:
    name: qpidd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_qpidd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000267

Disable Automatic Bug Reporting Tool (abrtd)   [ref]rule

The Automatic Bug Reporting Tool (abrtd) daemon collects and reports crash data when an application crash is detected. Using a variety of plugins, abrtd can email crash reports to system administrators, log crash reports to files, or forward crash reports to a centralized issue tracking system such as RHTSupport. The abrtd service can be disabled with the following command:

$ sudo chkconfig abrtd off

Rationale:

Mishandling crash data could expose sensitive information about vulnerabilities in software executing on the system, as well as sensitive information from within a process's address space or registers.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'abrtd' disable
/sbin/chkconfig --level 0123456 'abrtd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service abrtd
  service:
    name: abrtd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_abrtd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000261

Disable Cyrus SASL Authentication Daemon (saslauthd)   [ref]rule

The saslauthd service handles plaintext authentication requests on behalf of the SASL library. The service isolates all code requiring superuser privileges for SASL authentication into a single process, and can also be used to provide proxy authentication services to clients that do not understand SASL based authentication. The saslauthd service can be disabled with the following command:

$ sudo chkconfig saslauthd off

Rationale:

The saslauthd service provides essential functionality for performing authentication in some directory environments, such as those which use Kerberos and LDAP. For others, however, in which only local files may be consulted, it is not necessary and should be disabled.

Severity:  unknown

References:  AC-17(8), CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'saslauthd' disable
/sbin/chkconfig --level 0123456 'saslauthd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service saslauthd
  service:
    name: saslauthd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_saslauthd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7

Disable Control Group Config (cgconfig)   [ref]rule

Control groups allow an administrator to allocate system resources (such as CPU, memory, network bandwidth, etc) among a defined group (or groups) of processes executing on a system. The cgconfig daemon starts at boot and establishes the predefined control groups. The cgconfig service can be disabled with the following command:

$ sudo chkconfig cgconfig off

Rationale:

Unless control groups are used to manage system resources, running the cgconfig service is not necessary.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'cgconfig' disable
/sbin/chkconfig --level 0123456 'cgconfig' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service cgconfig
  service:
    name: cgconfig
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_cgconfig_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable ntpdate Service (ntpdate)   [ref]rule

The ntpdate service sets the local hardware clock by polling NTP servers when the system boots. It synchronizes to the NTP servers listed in /etc/ntp/step-tickers or /etc/ntp.conf and then sets the local hardware clock to the newly synchronized system time. The ntpdate service can be disabled with the following command:

$ sudo chkconfig ntpdate off

Rationale:

The ntpdate service may only be suitable for systems which are rebooted frequently enough that clock drift does not cause problems between reboots. In any event, the functionality of the ntpdate service is now available in the ntpd program and should be considered deprecated.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'ntpdate' disable
/sbin/chkconfig --level 0123456 'ntpdate' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service ntpdate
  service:
    name: ntpdate
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_ntpdate_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000265

Disable Network Router Discovery Daemon (rdisc)   [ref]rule

The rdisc service implements the client side of the ICMP Internet Router Discovery Protocol (IRDP), which allows discovery of routers on the local subnet. If a router is discovered then the local routing table is updated with a corresponding default route. By default this daemon is disabled. The rdisc service can be disabled with the following command:

$ sudo chkconfig rdisc off

Rationale:

General-purpose systems typically have their network and routing information configured statically by a system administrator. Workstations or some special-purpose systems often use DHCP (instead of IRDP) to retrieve dynamic network configuration information.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'rdisc' disable
/sbin/chkconfig --level 0123456 'rdisc' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service rdisc
  service:
    name: rdisc
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_rdisc_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000268

Disable Red Hat Subscription Manager Daemon (rhsmcertd)   [ref]rule

The Red Hat Subscription Manager (rhsmcertd) periodically checks for changes in the entitlement certificates for a registered system and updates it accordingly. The rhsmcertd service can be disabled with the following command:

$ sudo chkconfig rhsmcertd off

Rationale:

The rhsmcertd service can provide administrators with some additional control over which of their systems are entitled to particular subscriptions. However, for systems that are managed locally or which are not expected to require remote changes to their subscription status, it is unnecessary and can be disabled.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'rhsmcertd' disable
/sbin/chkconfig --level 0123456 'rhsmcertd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service rhsmcertd
  service:
    name: rhsmcertd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_rhsmcertd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Disable Portreserve (portreserve)   [ref]rule

The portreserve service is a TCP port reservation utility that can be used to prevent portmap from binding to well known TCP ports that are required for other services. The portreserve service can be disabled with the following command:

$ sudo chkconfig portreserve off

Rationale:

The portreserve service provides helpful functionality by preventing conflicting usage of ports in the reserved port range, but it can be disabled if not needed.

Severity:  unknown

References:  AC-17(8), CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'portreserve' disable
/sbin/chkconfig --level 0123456 'portreserve' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service portreserve
  service:
    name: portreserve
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_portreserve_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-CM-7

Disable System Statistics Reset Service (sysstat)   [ref]rule

The sysstat service resets various I/O and CPU performance statistics to zero in order to begin counting from a fresh state at boot time. The sysstat service can be disabled with the following command:

$ sudo chkconfig sysstat off

Rationale:

By default the sysstat service merely runs a program at boot to reset the statistics, which can be retrieved using programs such as sar and sadc. These may provide useful insight into system operation, but unless used this service can be disabled.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'sysstat' disable
/sbin/chkconfig --level 0123456 'sysstat' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service sysstat
  service:
    name: sysstat
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_sysstat_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Proxy Server   [ref]group

A proxy server is a very desirable target for a potential adversary because much (or all) sensitive data for a given infrastructure may flow through it. Therefore, if one is required, the system acting as a proxy server should be dedicated to that purpose alone and be stored in a physically secure location. The system's default proxy server software is Squid, and provided in an RPM package of the same name.

contains 2 rules

Disable Squid if Possible   [ref]group

If Squid was installed and activated, but the system does not need to act as a proxy server, then it should be disabled and removed.

contains 2 rules

Disable Squid   [ref]rule

The squid service can be disabled with the following command:

$ sudo chkconfig squid off

Rationale:

Running proxy server software provides a network-based avenue of attack, and should be removed if not needed.

Severity:  unknown

References:  2.2.13

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'squid' disable
/sbin/chkconfig --level 0123456 'squid' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service squid
  service:
    name: squid
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_squid_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

Uninstall squid Package   [ref]rule

The squid package can be removed with the following command:

 $ sudo yum erase squid

Rationale:

If there is no need to make the proxy server software available, removing it provides a safeguard against its activation.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove squid
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure squid is removed
  package:
    name: squid
    state: absent
  tags:
    - package_squid_removed
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_squid

class remove_squid {
  package { 'squid':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=squid

DHCP   [ref]group

The Dynamic Host Configuration Protocol (DHCP) allows systems to request and obtain an IP address and other configuration parameters from a server.

This guide recommends configuring networking on clients by manually editing the appropriate files under /etc/sysconfig. Use of DHCP can make client systems vulnerable to compromise by rogue DHCP servers, and should be avoided unless necessary. If using DHCP is necessary, however, there are best practices that should be followed to minimize security risk.

contains 6 rules

Disable DHCP Client   [ref]group

DHCP is the default network configuration method provided by the system installer, and common on many networks. Nevertheless, manual management of IP addresses for systems implies a greater degree of management and accountability for network activity.

contains 1 rule

Disable DHCP Client in ifcfg   [ref]rule

For each interface on the system (e.g. eth0), edit /etc/sysconfig/network-scripts/ifcfg-interface and make the following changes:

  • Correct the BOOTPROTO line to read:
    BOOTPROTO=none
  • Add or correct the following lines, substituting the appropriate values based on your site's addressing scheme:
    NETMASK=255.255.255.0
    IPADDR=192.168.1.2
    GATEWAY=192.168.1.1

Rationale:

DHCP relies on trusting the local network. If the local network is not trusted, then it should not be used. However, the automatic configuration provided by DHCP is commonly used and the alternative, manual configuration, presents an unacceptable burden in many circumstances.

Severity:  unknown

Configure DHCP Server   [ref]group

If the system must act as a DHCP server, the configuration information it serves should be minimized. Also, support for other protocols and DNS-updating schemes should be explicitly disabled unless needed. The configuration file for dhcpd is called /etc/dhcp/dhcpd.conf. The file begins with a number of global configuration options. The remainder of the file is divided into sections, one for each block of addresses offered by dhcpd, each of which contains configuration options specific to that address block.

contains 5 rules

Minimize Served Information   [ref]rule

Edit /etc/dhcp/dhcpd.conf. Examine each address range section within the file, and ensure that the following options are not defined unless there is an operational need to provide this information via DHCP:

option domain-name
option domain-name-servers
option nis-domain
option nis-servers
option ntp-servers
option routers
option time-offset

Warning:  By default, the Red Hat Enterprise Linux client installation uses DHCP to request much of the above information from the DHCP server. In particular, domain-name, domain-name-servers, and routers are configured via DHCP. These settings are typically necessary for proper network functionality, but are also usually static across systems at a given site.
Rationale:

Because the configuration information provided by the DHCP server could be maliciously provided to clients by a rogue DHCP server, the amount of information provided via DHCP should be minimized. Remove these definitions from the DHCP server configuration to ensure that legitimate clients do not unnecessarily rely on DHCP for this information.

Severity:  unknown

References:  CM-7

Deny BOOTP Queries   [ref]rule

Unless your network needs to support older BOOTP clients, disable support for the bootp protocol by adding or correcting the global option:

deny bootp;

Rationale:

The bootp option tells dhcpd to respond to BOOTP queries. If support for this simpler protocol is not needed, it should be disabled to remove attack vectors against the DHCP server.

Severity:  unknown

References:  CM-7

Do Not Use Dynamic DNS   [ref]rule

To prevent the DHCP server from receiving DNS information from clients, edit /etc/dhcp/dhcpd.conf, and add or correct the following global option:

ddns-update-style none;

Warning:  The ddns-update-style option controls only whether the DHCP server will attempt to act as a Dynamic DNS client. As long as the DNS server itself is correctly configured to reject DDNS attempts, an incorrect ddns-update-style setting on the client is harmless (but should be fixed as a best practice).
Rationale:

The Dynamic DNS protocol is used to remotely update the data served by a DNS server. DHCP servers can use Dynamic DNS to publish information about their clients. This setup carries security risks, and its use is not recommended. If Dynamic DNS must be used despite the risks it poses, it is critical that Dynamic DNS transactions be protected using TSIG or some other cryptographic authentication mechanism. See dhcpd.conf(5) for more information about protecting the DHCP server from passing along malicious DNS data from its clients.

Severity:  unknown

References:  CM-7

Deny Decline Messages   [ref]rule

Edit /etc/dhcp/dhcpd.conf and add or correct the following global option to prevent the DHCP server from responding the DHCPDECLINE messages, if possible:

deny declines;

Rationale:

The DHCPDECLINE message can be sent by a DHCP client to indicate that it does not consider the lease offered by the server to be valid. By issuing many DHCPDECLINE messages, a malicious client can exhaust the DHCP server's pool of IP addresses, causing the DHCP server to forget old address allocations.

Severity:  unknown

References:  CM-7

Configure Logging   [ref]rule

Ensure that the following line exists in /etc/rsyslog.conf:

daemon.*           /var/log/daemon.log
Configure logwatch or other log monitoring tools to summarize error conditions reported by the dhcpd process.

Rationale:

By default, dhcpd logs notices to the daemon facility. Sending all daemon messages to a dedicated log file is part of the syslog configuration outlined in the Logging and Auditing section

Severity:  unknown

References:  AU-12

IMAP and POP3 Server   [ref]group

Dovecot provides IMAP and POP3 services. It is not installed by default. The project page at http://www.dovecot.org contains more detailed information about Dovecot configuration.

contains 5 rules

Configure Dovecot if Necessary   [ref]group

If the system will operate as an IMAP or POP3 server, the dovecot software should be configured securely by following the recommendations below.

contains 3 rules

Enable SSL Support   [ref]group

SSL should be used to encrypt network traffic between the Dovecot server and its clients. Users must authenticate to the Dovecot server in order to read their mail, and passwords should never be transmitted in clear text. In addition, protecting mail as it is downloaded is a privacy measure, and clients may use SSL certificates to authenticate the server, preventing another system from impersonating the server.

contains 3 rules

Configure Dovecot to Use the SSL Key file   [ref]rule

This option tells Dovecot where to find the the mail server's SSL Key.

Edit /etc/dovecot/conf.d/10-ssl.conf and add or correct the following line (note: the path below is the default path set by the Dovecot installation. If you are using a different path, ensure you reference the appropriate file):

ssl_key = </etc/pki/dovecot/private/dovecot.pem

Rationale:

SSL certificates are used by the client to authenticate the identity of the server, as well as to encrypt credentials and message traffic. Not using SSL to encrypt mail server traffic could allow unauthorized access to credentials and mail messages since they are sent in plain text over the network.

Severity:  unknown

Enable the SSL flag in /etc/dovecot.conf   [ref]rule

To allow clients to make encrypted connections the ssl flag in Dovecot's configuration file needs to be set to yes.

Edit /etc/dovecot/conf.d/10-ssl.conf and add or correct the following line:

ssl = yes

Rationale:

SSL encrypt network traffic between the Dovecot server and its clients protecting user credentials, mail as it is downloaded, and clients may use SSL certificates to authenticate the server, preventing another system from impersonating the server.

Severity:  unknown

Configure Dovecot to Use the SSL Certificate file   [ref]rule

This option tells Dovecot where to find the the mail server's SSL Certificate.

Edit /etc/dovecot/conf.d/10-ssl.conf and add or correct the following line (note: the path below is the default path set by the Dovecot installation. If you are using a different path, ensure you reference the appropriate file):

ssl_cert = </etc/pki/dovecot/certs/dovecot.pem

Rationale:

SSL certificates are used by the client to authenticate the identity of the server, as well as to encrypt credentials and message traffic. Not using SSL to encrypt mail server traffic could allow unauthorized access to credentials and mail messages since they are sent in plain text over the network.

Severity:  unknown

Disable Dovecot   [ref]group

If the system does not need to operate as an IMAP or POP3 server, the dovecot software should be disabled and removed.

contains 2 rules

Uninstall dovecot Package   [ref]rule

The dovecot package can be removed with the following command:

$ sudo yum erase dovecot

Rationale:

If there is no need to make the Dovecot software available, removing it provides a safeguard against its activation.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable
# Function to remove packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_remove telnet-server
#
function package_remove {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_remove 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if rpm -q --quiet "$package"; then
    dnf remove -y "$package"
  fi
elif which yum ; then
  if rpm -q --quiet "$package"; then
    yum remove -y "$package"
  fi
elif which apt-get ; then
  apt-get remove -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_remove dovecot
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Ensure dovecot is removed
  package:
    name: dovecot
    state: absent
  tags:
    - package_dovecot_removed
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
include remove_dovecot

class remove_dovecot {
  package { 'dovecot':
    ensure => 'purged',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable

package --remove=dovecot

Disable Dovecot Service   [ref]rule

The dovecot service can be disabled with the following command:

$ sudo chkconfig dovecot off

Rationale:

Running an IMAP or POP3 server provides a network-based avenue of attack, and should be disabled if not needed.

Severity:  unknown

References:  2.2.11

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'dovecot' disable
/sbin/chkconfig --level 0123456 'dovecot' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service dovecot
  service:
    name: dovecot
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_dovecot_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

NFS and RPC   [ref]group

The Network File System is a popular distributed filesystem for the Unix environment, and is very widely deployed. This section discusses the circumstances under which it is possible to disable NFS and its dependencies, and then details steps which should be taken to secure NFS's configuration. This section is relevant to systems operating as NFS clients, as well as to those operating as NFS servers.

contains 16 rules

Configure NFS Servers   [ref]group

The steps in this section are appropriate for systems which operate as NFS servers.

contains 3 rules

Use Root-Squashing on All Exports   [ref]rule

If a filesystem is exported using root squashing, requests from root on the client are considered to be unprivileged (mapped to a user such as nobody). This provides some mild protection against remote abuse of an NFS server. Root squashing is enabled by default, and should not be disabled.

Ensure that no line in /etc/exports contains the option no_root_squash.

Rationale:

If the NFS server allows root access to local file systems from remote hosts, this access could be used to compromise the system.

Severity:  unknown

Restrict NFS Clients to Privileged Ports   [ref]rule

By default, the server NFS implementation requires that all client requests be made from ports less than 1024. If your organization has control over systems connected to its network, and if NFS requests are prohibited at the border firewall, this offers some protection against malicious requests from unprivileged users. Therefore, the default should not be changed.

To ensure that the default has not been changed, ensure no line in /etc/exports contains the option insecure.

Rationale:

Allowing client requests to be made from ports higher than 1024 could allow a unprivileged user to initiate an NFS connection. If the unprivileged user account has been compromised, an attacker could gain access to data on the NFS server.

Severity:  unknown

References:  AC-3

Ensure Insecure File Locking is Not Allowed   [ref]rule

By default the NFS server requires secure file-lock requests, which require credentials from the client in order to lock a file. Most NFS clients send credentials with file lock requests, however, there are a few clients that do not send credentials when requesting a file-lock, allowing the client to only be able to lock world-readable files. To get around this, the insecure_locks option can be used so these clients can access the desired export. This poses a security risk by potentially allowing the client access to data for which it does not have authorization. Remove any instances of the insecure_locks option from the file /etc/exports.

Rationale:

Allowing insecure file locking could allow for sensitive data to be viewed or edited by an unauthorized user.

Severity:  medium

Disable All NFS Services if Possible   [ref]group

If there is not a reason for the system to operate as either an NFS client or an NFS server, follow all instructions in this section to disable subsystems required by NFS.

Warning:  The steps in this section will prevent a system from operating as either an NFS client or an NFS server. Only perform these steps on systems which do not need NFS at all.
contains 4 rules

Disable Services Used Only by NFS   [ref]group

If NFS is not needed, disable the NFS client daemons nfslock, rpcgssd, and rpcidmapd.

All of these daemons run with elevated privileges, and many listen for network connections. If they are not needed, they should be disabled to improve system security posture.

contains 3 rules

Disable Network File System Lock Service (nfslock)   [ref]rule

The Network File System Lock (nfslock) service starts the required remote procedure call (RPC) processes which allow clients to lock files on the server. If the local system is not configured to mount NFS filesystems then this service should be disabled. The nfslock service can be disabled with the following command:

$ sudo chkconfig nfslock off

Rationale:

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'nfslock' disable
/sbin/chkconfig --level 0123456 'nfslock' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service nfslock
  service:
    name: nfslock
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_nfslock_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

Disable RPC ID Mapping Service (rpcidmapd)   [ref]rule

The rpcidmapd service is used to map user names and groups to UID and GID numbers on NFSv4 mounts. If NFS is not in use on the local system then this service should be disabled. The rpcidmapd service can be disabled with the following command:

$ sudo chkconfig rpcidmapd off

Rationale:

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'rpcidmapd' disable
/sbin/chkconfig --level 0123456 'rpcidmapd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service rpcidmapd
  service:
    name: rpcidmapd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_rpcidmapd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

Disable Secure RPC Client Service (rpcgssd)   [ref]rule

The rpcgssd service manages RPCSEC GSS contexts required to secure protocols that use RPC (most often Kerberos and NFS). The rpcgssd service is the client-side of RPCSEC GSS. If the system does not require secure RPC then this service should be disabled. The rpcgssd service can be disabled with the following command:

$ sudo chkconfig rpcgssd off

Rationale:

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'rpcgssd' disable
/sbin/chkconfig --level 0123456 'rpcgssd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service rpcgssd
  service:
    name: rpcgssd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_rpcgssd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

Disable netfs if Possible   [ref]group

To determine if any network filesystems handled by netfs are currently mounted on the system execute the following command:

$ mount -t nfs,nfs4,smbfs,cifs,ncpfs
If the command did not return any output then disable netfs.

contains 1 rule

Disable Network File Systems (netfs)   [ref]rule

The netfs script manages the boot-time mounting of several types of networked filesystems, of which NFS and Samba are the most common. If these filesystem types are not in use, the script can be disabled, protecting the system somewhat against accidental or malicious changes to /etc/fstab and against flaws in the netfs script itself. The netfs service can be disabled with the following command:

$ sudo chkconfig netfs off

Rationale:

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'netfs' disable
/sbin/chkconfig --level 0123456 'netfs' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service netfs
  service:
    name: netfs
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_netfs_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

Configure All Systems which Use NFS   [ref]group

The steps in this section are appropriate for all systems which run NFS, whether they operate as clients or as servers.

contains 4 rules

Configure NFS Services to Use Fixed Ports (NFSv3 and NFSv2)   [ref]group

Firewalling should be done at each host and at the border firewalls to protect the NFS daemons from remote access, since NFS servers should never be accessible from outside the organization. However, by default for NFSv3 and NFSv2, the RPC Bind service assigns each NFS service to a port dynamically at service startup time. Dynamic ports cannot be protected by port filtering firewalls such as iptables.

Therefore, restrict each service to always use a given port, so that firewalling can be done effectively. Note that, because of the way RPC is implemented, it is not possible to disable the RPC Bind service even if ports are assigned statically to all RPC services.

In NFSv4, the mounting and locking protocols have been incorporated into the protocol, and the server listens on the the well-known TCP port 2049. As such, NFSv4 does not need to interact with the rpcbind, lockd, and rpc.statd daemons, which can and should be disabled in a pure NFSv4 environment. The rpc.mountd daemon is still required on the NFS server to setup exports, but is not involved in any over-the-wire operations.

contains 4 rules

Configure lockd to use static TCP port   [ref]rule

Configure the lockd daemon to use a static TCP port as opposed to letting the RPC Bind service dynamically assign a port. Edit the file /etc/sysconfig/nfs. Add or correct the following line:

LOCKD_TCPPORT=lockd-port
Where lockd-port is a port which is not used by any other service on your network.

Rationale:

Restrict service to always use a given port, so that firewalling can be done effectively.

Severity:  unknown

Configure lockd to use static UDP port   [ref]rule

Configure the lockd daemon to use a static UDP port as opposed to letting the RPC Bind service dynamically assign a port. Edit the file /etc/sysconfig/nfs. Add or correct the following line:

LOCKD_UDPPORT=lockd-port
Where lockd-port is a port which is not used by any other service on your network.

Rationale:

Restricting services to always use a given port enables firewalling to be done more effectively.

Severity:  unknown

Configure statd to use static port   [ref]rule

Configure the statd daemon to use a static port as opposed to letting the RPC Bind service dynamically assign a port. Edit the file /etc/sysconfig/nfs. Add or correct the following line:

STATD_PORT=statd-port
Where statd-port is a port which is not used by any other service on your network.

Rationale:

Restricting services to always use a given port enables firewalling to be done more effectively.

Severity:  unknown

Configure mountd to use static port   [ref]rule

Configure the mountd daemon to use a static port as opposed to letting the RPC Bind service dynamically assign a port. Edit the file /etc/sysconfig/nfs. Add or correct the following line:

MOUNTD_PORT=statd-port
Where mountd-port is a port which is not used by any other service on your network.

Rationale:

Restricting services to always use a given port enables firewalling to be done more effectively.

Severity:  unknown

Configure NFS Clients   [ref]group

The steps in this section are appropriate for systems which operate as NFS clients.

contains 5 rules

Mount Remote Filesystems with Restrictive Options   [ref]group

Edit the file /etc/fstab. For each filesystem whose type (column 3) is nfs or nfs4, add the text ,nodev,nosuid to the list of mount options in column 4. If appropriate, also add ,noexec.

See the section titled "Restrict Partition Mount Options" for a description of the effects of these options. In general, execution of files mounted via NFS should be considered risky because of the possibility that an adversary could intercept the request and substitute a malicious file. Allowing setuid files to be executed from remote servers is particularly risky, both for this reason and because it requires the clients to extend root-level trust to the NFS server.

contains 2 rules

Mount Remote Filesystems with nosuid   [ref]rule

Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of any NFS mounts.

Rationale:

NFS mounts should not present suid binaries to users. Only vendor-supplied suid executables should be installed to their default location on the local filesystem.

Severity:  medium

Remediation Shell script:   (show)

function include_mount_options_functions {
	:
}

# $1: type of filesystem
# $2: new mount point option
function ensure_mount_option_for_vfstype {
        local _vfstype="$1" _new_opt="$2" _vfstype_points=()
        _vfstype_points=($(grep -E "[[:space:]]$_vfstype[[:space:]]" /etc/fstab | awk '{print $2}'))

        for _vfstype_point in "${_vfstype_points[@]}"
        do
                ensure_mount_option_in_fstab "$_vfstype_point" "$_new_opt"
        done
}

# $1: mount point
# $2: new mount point option
function ensure_mount_option_in_fstab {
	local _mount_point="$1" _new_opt="$2" _mount_point_match_regexp="" _previous_mount_opts=""
	_mount_point_match_regexp="$(get_mount_point_regexp "$_mount_point")"

	if [ $(grep "$_mount_point_match_regexp" /etc/fstab | grep -c "$_new_opt" ) -eq 0 ]; then
		_previous_mount_opts=$(grep "$_mount_point_match_regexp" /etc/fstab | awk '{print $4}')
		sed -i "s|\(${_mount_point_match_regexp}.*${_previous_mount_opts}\)|\1,${_new_opt}|" /etc/fstab
	fi
}

# $1: mount point
function get_mount_point_regexp {
		printf "[[:space:]]%s[[:space:]]" "$1"
}

# $1: mount point
function assert_mount_point_in_fstab {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	grep "$_mount_point_match_regexp" -q /etc/fstab \
		|| { echo "The mount point '$1' is not even in /etc/fstab, so we can't set up mount options" >&2; return 1; }
}

# $1: mount point
function remove_defaults_from_fstab_if_overriden {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	if $(grep "$_mount_point_match_regexp" /etc/fstab | grep -q "defaults,")
	then
		sed -i "s|\(${_mount_point_match_regexp}.*\)defaults,|\1|" /etc/fstab
	fi
}

# $1: mount point
function ensure_partition_is_mounted {
	local _mount_point="$1"
	mkdir -p "$_mount_point" || return 1
	if mountpoint -q "$_mount_point"; then
		mount -o remount --target "$_mount_point"
	else
		mount --target "$_mount_point"
	fi
}

include_mount_options_functions

ensure_mount_option_for_vfstype "nfs[4]?" "nosuid"
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Strategy:configure

- name: "Get nfs and nfs4 mount points, that don't have nosuid"
  shell: grep -E "[[:space:]]nfs[4]?[[:space:]]" /etc/fstab | grep -v "nosuid" | awk '{print $2}'
  register: points_register
  check_mode: no
  tags:
    - mount_option_nosuid_remote_filesystems
    - medium_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000270

- name: "Add nosuid to mount points"
  shell: awk '$2=="{{ item }}"{$4=$4",nosuid"}1' /etc/fstab > fstab.tmp && mv fstab.tmp /etc/fstab
  with_items:
    - "{{ points_register.stdout_lines }}"
  when: points_register.stdout | length > 0
  tags:
    - mount_option_nosuid_remote_filesystems
    - medium_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-6
    - DISA-STIG-RHEL-06-000270

Mount Remote Filesystems with nodev   [ref]rule

Add the nodev option to the fourth column of /etc/fstab for the line which controls mounting of any NFS mounts.

Rationale:

Legitimate device files should only exist in the /dev directory. NFS mounts should not present device files to users.

Severity:  medium

Remediation Shell script:   (show)

function include_mount_options_functions {
	:
}

# $1: type of filesystem
# $2: new mount point option
function ensure_mount_option_for_vfstype {
        local _vfstype="$1" _new_opt="$2" _vfstype_points=()
        _vfstype_points=($(grep -E "[[:space:]]$_vfstype[[:space:]]" /etc/fstab | awk '{print $2}'))

        for _vfstype_point in "${_vfstype_points[@]}"
        do
                ensure_mount_option_in_fstab "$_vfstype_point" "$_new_opt"
        done
}

# $1: mount point
# $2: new mount point option
function ensure_mount_option_in_fstab {
	local _mount_point="$1" _new_opt="$2" _mount_point_match_regexp="" _previous_mount_opts=""
	_mount_point_match_regexp="$(get_mount_point_regexp "$_mount_point")"

	if [ $(grep "$_mount_point_match_regexp" /etc/fstab | grep -c "$_new_opt" ) -eq 0 ]; then
		_previous_mount_opts=$(grep "$_mount_point_match_regexp" /etc/fstab | awk '{print $4}')
		sed -i "s|\(${_mount_point_match_regexp}.*${_previous_mount_opts}\)|\1,${_new_opt}|" /etc/fstab
	fi
}

# $1: mount point
function get_mount_point_regexp {
		printf "[[:space:]]%s[[:space:]]" "$1"
}

# $1: mount point
function assert_mount_point_in_fstab {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	grep "$_mount_point_match_regexp" -q /etc/fstab \
		|| { echo "The mount point '$1' is not even in /etc/fstab, so we can't set up mount options" >&2; return 1; }
}

# $1: mount point
function remove_defaults_from_fstab_if_overriden {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	if $(grep "$_mount_point_match_regexp" /etc/fstab | grep -q "defaults,")
	then
		sed -i "s|\(${_mount_point_match_regexp}.*\)defaults,|\1|" /etc/fstab
	fi
}

# $1: mount point
function ensure_partition_is_mounted {
	local _mount_point="$1"
	mkdir -p "$_mount_point" || return 1
	if mountpoint -q "$_mount_point"; then
		mount -o remount --target "$_mount_point"
	else
		mount --target "$_mount_point"
	fi
}

include_mount_options_functions

ensure_mount_option_for_vfstype "nfs[4]?" "nodev"
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Strategy:configure

- name: "Get nfs and nfs4 mount points, that don't have nodev"
  shell: grep -E "[[:space:]]nfs[4]?[[:space:]]" /etc/fstab | grep -v "nodev" | awk '{print $2}'
  register: points_register
  check_mode: no
  tags:
    - mount_option_nodev_remote_filesystems
    - medium_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - NIST-800-53-MP-2
    - DISA-STIG-RHEL-06-000269

- name: "Add nodev to mount points"
  shell: awk '$2=="{{ item }}"{$4=$4",nodev"}1' /etc/fstab > fstab.tmp && mv fstab.tmp /etc/fstab
  with_items:
    - "{{ points_register.stdout_lines }}"
  when: points_register.stdout | length > 0
  tags:
    - mount_option_nodev_remote_filesystems
    - medium_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - NIST-800-53-MP-2
    - DISA-STIG-RHEL-06-000269

Disable NFS Server Daemons   [ref]group

There is no need to run the NFS server daemons nfs and rpcsvcgssd except on a small number of properly secured systems designated as NFS servers. Ensure that these daemons are turned off on clients.

contains 3 rules

Specify UID and GID for Anonymous NFS Connections   [ref]rule

To specify the UID and GID for remote root users, edit the /etc/exports file and add the following for each export:

anonuid=value greater than UID_MAX from /etc/login.defs
anongid=value greater than GID_MAX from /etc/login.defs
Note that a value of "-1" is technically acceptable as this will randomize the anonuid and anongid values on a Red Hat Enterprise Linux 6 based NFS server. While acceptable from a security perspective, a value of -1 may cause interoperability issues, particularly with Red Hat Enterprise Linux 7 client systems. Alternatively, functionally equivalent values of 60001, 65534, 65535 may be used.

Rationale:

Specifying the anonymous UID and GID ensures that the remote root user is mapped to a local account which has no permissions on the system.

Severity:  unknown

Disable Network File System (nfs)   [ref]rule

The Network File System (NFS) service allows remote hosts to mount and interact with shared filesystems on the local system. If the local system is not designated as a NFS server then this service should be disabled. The nfs service can be disabled with the following command:

$ sudo chkconfig nfs off

Rationale:

Unnecessary services should be disabled to decrease the attack surface of the system.

Severity:  unknown

References:  2.2.7, AC-3

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'nfs' disable
/sbin/chkconfig --level 0123456 'nfs' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service nfs
  service:
    name: nfs
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_nfs_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-3

Disable Secure RPC Server Service (rpcsvcgssd)   [ref]rule

The rpcsvcgssd service manages RPCSEC GSS contexts required to secure protocols that use RPC (most often Kerberos and NFS). The rpcsvcgssd service is the server-side of RPCSEC GSS. If the system does not require secure RPC then this service should be disabled. The rpcsvcgssd service can be disabled with the following command:

$ sudo chkconfig rpcsvcgssd off

Rationale:

Unnecessary services should be disabled to decrease the attack surface of the system.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'rpcsvcgssd' disable
/sbin/chkconfig --level 0123456 'rpcsvcgssd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service rpcsvcgssd
  service:
    name: rpcsvcgssd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_rpcsvcgssd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

Print Support   [ref]group

The Common Unix Printing System (CUPS) service provides both local and network printing support. A system running the CUPS service can accept print jobs from other systems, process them, and send them to the appropriate printer. It also provides an interface for remote administration through a web browser. The CUPS service is installed and activated by default. The project homepage and more detailed documentation are available at http://www.cups.org.

contains 2 rules

Configure the CUPS Service if Necessary   [ref]group

CUPS provides the ability to easily share local printers with other systems over the network. It does this by allowing systems to share lists of available printers. Additionally, each system that runs the CUPS service can potentially act as a print server. Whenever possible, the printer sharing and print server capabilities of CUPS should be limited or disabled. The following recommendations should demonstrate how to do just that.

contains 1 rule

Disable Printer Browsing Entirely if Possible   [ref]rule

By default, CUPS listens on the network for printer list broadcasts on UDP port 631. This functionality is called printer browsing. To disable printer browsing entirely, edit the CUPS configuration file, located at /etc/cups/cupsd.conf, to include the following:

Browsing Off
BrowseAllow none

Rationale:

The CUPS print service can be configured to broadcast a list of available printers to the network. Other systems on the network, also running the CUPS print service, can be configured to listen to these broadcasts and add and configure these printers for immediate use. By disabling this browsing capability, the system will no longer generate or receive such broadcasts.

Severity:  unknown

References:  CM-7

Disable the CUPS Service   [ref]rule

The cups service can be disabled with the following command:

$ sudo chkconfig cups off

Rationale:

Turn off unneeded services to reduce attack surface.

Severity:  unknown

References:  2.2.4, CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'cups' disable
/sbin/chkconfig --level 0123456 'cups' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service cups
  service:
    name: cups
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_cups_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7

Avahi Server   [ref]group

The Avahi daemon implements the DNS Service Discovery and Multicast DNS protocols, which provide service and host discovery on a network. It allows a system to automatically identify resources on the network, such as printers or web servers. This capability is also known as mDNSresponder and is a major part of Zeroconf networking.

contains 5 rules

Disable Avahi Server if Possible   [ref]group

Because the Avahi daemon service keeps an open network port, it is subject to network attacks. Disabling it can reduce the system's vulnerability to such attacks.

contains 1 rule

Disable Avahi Server Software   [ref]rule

The avahi-daemon service can be disabled with the following command:

$ sudo chkconfig avahi-daemon off

Rationale:

Because the Avahi daemon service keeps an open network port, it is subject to network attacks. Its functionality is convenient but is only appropriate if the local network can be trusted.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'avahi-daemon' disable
/sbin/chkconfig --level 0123456 'avahi-daemon' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service avahi-daemon
  service:
    name: avahi-daemon
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_avahi-daemon_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000246

Configure Avahi if Necessary   [ref]group

If your system requires the Avahi daemon, its configuration can be restricted to improve security. The Avahi daemon configuration file is /etc/avahi/avahi-daemon.conf. The following security recommendations should be applied to this file: See the avahi-daemon.conf(5) man page, or documentation at http://www.avahi.org, for more detailed information about the configuration options.

contains 4 rules

Check Avahi Responses' TTL Field   [ref]rule

To make Avahi ignore packets unless the TTL field is 255, edit /etc/avahi/avahi-daemon.conf and ensure the following line appears in the [server] section:

check-response-ttl=yes

Rationale:

This helps to ensure that only mDNS responses from the local network are processed, because the TTL field in a packet is decremented from its initial value of 255 whenever it is routed from one network to another. Although a properly-configured router or firewall should not allow mDNS packets into the local network at all, this option provides another check to ensure they are not permitted.

Severity:  unknown

References:  CM-7

Disable Avahi Publishing   [ref]rule

To prevent Avahi from publishing its records, edit /etc/avahi/avahi-daemon.conf and ensure the following line appears in the [publish] section:

disable-publishing=yes

Rationale:

This helps ensure that no record will be published by Avahi.

Severity:  unknown

References:  CM-7

Serve Avahi Only via Required Protocol   [ref]rule

If you are using only IPv4, edit /etc/avahi/avahi-daemon.conf and ensure the following line exists in the [server] section:

use-ipv6=no
Similarly, if you are using only IPv6, disable IPv4 sockets with the line:
use-ipv4=no

Rationale:

Severity:  unknown

References:  CM-7

Prevent Other Programs from Using Avahi's Port   [ref]rule

To prevent other mDNS stacks from running, edit /etc/avahi/avahi-daemon.conf and ensure the following line appears in the [server] section:

disallow-other-stacks=yes

Rationale:

This helps ensure that only Avahi is responsible for mDNS traffic coming from that port on the system.

Severity:  unknown

References:  CM-7

SSH Server   [ref]group

The SSH protocol is recommended for remote login and remote file transfer. SSH provides confidentiality and integrity for data exchanged between two systems, as well as server authentication, through the use of public key cryptography. The implementation included with the system is called OpenSSH, and more detailed documentation is available from its website, http://www.openssh.org. Its server program is called sshd and provided by the RPM package openssh-server.

contains 10 rules

Configure OpenSSH Server if Necessary   [ref]group

If the system needs to act as an SSH server, then certain changes should be made to the OpenSSH daemon configuration file /etc/ssh/sshd_config. The following recommendations can be applied to this file. See the sshd_config(5) man page for more detailed information.

contains 9 rules

Disable SSH Access via Empty Passwords   [ref]rule

To explicitly disallow SSH login from accounts with empty passwords, add or correct the following line in /etc/ssh/sshd_config:

PermitEmptyPasswords no

Any accounts with empty passwords should be disabled immediately, and PAM configuration should prevent users from being able to assign themselves empty passwords.

Rationale:

Configuring this setting for the SSH daemon provides additional assurance that remote login via SSH will require a password, even in the event of misconfiguration elsewhere.

Severity:  high

Remediation Shell script:   (show)

# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/ssh/sshd_config' '^PermitEmptyPasswords' 'no' '' '%s %s'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Disable SSH Access via Empty Passwords
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^PermitEmptyPasswords
    line: PermitEmptyPasswords no
    validate: sshd -t -f %s
  tags:
    - sshd_disable_empty_passwords
    - high_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-3
    - NIST-800-53-AC-6
    - NIST-800-53-CM-6(b)
    - NIST-800-171-3.1.1
    - NIST-800-171-3.1.5
    - CJIS-5.5.6
    - DISA-STIG-RHEL-06-000239

Set SSH Client Alive Count   [ref]rule

To ensure the SSH idle timeout occurs precisely when the ClientAliveInterval is set, edit /etc/ssh/sshd_config as follows:

ClientAliveCountMax 0

Rationale:

This ensures a user login will be terminated as soon as the ClientAliveInterval is reached.

Severity:  medium

Remediation Shell script:   (show)

# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/ssh/sshd_config' '^ClientAliveCountMax' '0' '' '%s %s'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Set SSH Client Alive Count
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^ClientAliveCountMax
    line: ClientAliveCountMax 0
    validate: sshd -t -f %s
  #notify: restart sshd
  tags:
    - sshd_set_keepalive
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-2(5)
    - NIST-800-53-SA-8
    - NIST-800-53-AC-12
    - NIST-800-171-3.1.11
    - CJIS-5.5.6
    - DISA-STIG-RHEL-06-000231

Limit Users' SSH Access   [ref]rule

By default, the SSH configuration allows any user with an account to access the system. In order to specify the users that are allowed to login via SSH and deny all other users, add or correct the following line in the /etc/ssh/sshd_config file:

DenyUsers USER1 USER2
Where USER1 and USER2 are valid user names.

Rationale:

Specifying which accounts are allowed SSH access into the system reduces the possibility of unauthorized access to the system.

Severity:  unknown

References:  3.1.12, AC-3

Enable SSH Warning Banner   [ref]rule

To enable the warning banner and ensure it is consistent across the system, add or correct the following line in /etc/ssh/sshd_config:

Banner /etc/issue
Another section contains information on how to create an appropriate system-wide warning banner.

Rationale:

The warning message reinforces policy awareness during the logon process and facilitates possible legal action against attackers. Alternatively, systems whose ownership should not be obvious should ensure usage of a banner that does not provide easy attribution.

Severity:  medium

Remediation Shell script:   (show)


grep -q ^Banner /etc/ssh/sshd_config && \
  sed -i "s/Banner.*/Banner \/etc\/issue/g" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
    echo "Banner /etc/issue" >> /etc/ssh/sshd_config
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Enable SSH Warning Banner
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^Banner
    line: Banner /etc/issue
    validate: sshd -t -f %s
  tags:
    - sshd_enable_warning_banner
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-8(a)
    - NIST-800-53-AC-8(b)
    - NIST-800-53-AC-8(c)(1)
    - NIST-800-53-AC-8(c)(2)
    - NIST-800-53-AC-8(c)(3)
    - NIST-800-171-3.1.9
    - CJIS-5.5.6
    - DISA-STIG-RHEL-06-000240

Do Not Allow SSH Environment Options   [ref]rule

To ensure users are not able to override environment options to the SSH daemon, add or correct the following line in /etc/ssh/sshd_config:

PermitUserEnvironment no

Rationale:

SSH environment options potentially allow users to bypass access restriction in some configurations.

Severity:  medium

Remediation Shell script:   (show)

grep -q ^PermitUserEnvironment /etc/ssh/sshd_config && \
  sed -i "s/PermitUserEnvironment.*/PermitUserEnvironment no/g" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
    echo "PermitUserEnvironment no" >> /etc/ssh/sshd_config
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Do Not Allow SSH Environment Options
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^PermitUserEnvironment
    line: PermitUserEnvironment no
    validate: sshd -t -f %s
  tags:
    - sshd_do_not_permit_user_env
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-6(b)
    - NIST-800-171-3.1.12
    - CJIS-5.5.6
    - DISA-STIG-RHEL-06-000241

Allow Only SSH Protocol 2   [ref]rule

Only SSH protocol version 2 connections should be permitted. The default setting in /etc/ssh/sshd_config is correct, and can be verified by ensuring that the following line appears:

Protocol 2

Warning:  As of openssh-server version 7.4 and above, the only protocol supported is version 2, and line
Protocol 2
in /etc/ssh/sshd_config is not necessary.
Rationale:

SSH protocol version 1 is an insecure implementation of the SSH protocol and has many well-known vulnerability exploits. Exploits of the SSH daemon could provide immediate root access to the system.

Severity:  high

Remediation Shell script:   (show)

# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/ssh/sshd_config' '^Protocol' '2' '' '%s %s'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict

- name: "Allow Only SSH Protocol 2"
  lineinfile:
    dest: /etc/ssh/sshd_config
    regexp: "^Protocol [0-9]"
    line: "Protocol 2"
    validate: sshd -t -f %s
  #notify: :reload ssh
  tags:
    - sshd_allow_only_protocol2
    - high_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AC-17(8).1(ii)
    - NIST-800-53-IA-5(1)(c)
    - NIST-800-171-3.1.13
    - NIST-800-171-3.5.4
    - CJIS-5.5.6
    - DISA-STIG-RHEL-06-000227

Disable SSH Support for .rhosts Files   [ref]rule

SSH can emulate the behavior of the obsolete rsh command in allowing users to enable insecure access to their accounts via .rhosts files.

To ensure this behavior is disabled, add or correct the following line in /etc/ssh/sshd_config:

IgnoreRhosts yes

Rationale:

SSH trust relationships mean a compromise on one host can allow an attacker to move trivially to other hosts.

Severity:  medium

Remediation Shell script:   (show)

# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/ssh/sshd_config' '^IgnoreRhosts' 'yes' '' '%s %s'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Disable SSH Support for .rhosts Files
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^IgnoreRhosts
    line: IgnoreRhosts yes
    validate: sshd -t -f %s
  tags:
    - sshd_disable_rhosts
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-3
    - NIST-800-53-CM-6(a)
    - NIST-800-171-3.1.12
    - CJIS-5.5.6
    - DISA-STIG-RHEL-06-000234

Use Only FIPS 140-2 Validated Ciphers   [ref]rule

Limit the ciphers to those algorithms which are FIPS-approved. Counter (CTR) mode is also preferred over cipher-block chaining (CBC) mode. The following line in /etc/ssh/sshd_config demonstrates use of FIPS-approved ciphers:

Ciphers aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc
The man page sshd_config(5) contains a list of supported ciphers.

Rationale:

Unapproved mechanisms that are used for authentication to the cryptographic module are not verified and therefore cannot be relied upon to provide confidentiality or integrity, and system data may be compromised.
Operating systems utilizing encryption are required to use FIPS-compliant mechanisms for authenticating to cryptographic modules.
FIPS 140-2 is the current standard for validating that mechanisms used to access cryptographic modules utilize authentication that meets industry and government requirements. For government systems, this allows Security Levels 1, 2, 3, or 4 for use on Red Hat Enterprise Linux.

Severity:  medium

Remediation Shell script:   (show)

grep -q ^Ciphers /etc/ssh/sshd_config && \
  sed -i "s/Ciphers.*/Ciphers aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc/g" /etc/ssh/sshd_config
if ! [ $? -eq 0 ]; then
    echo "Ciphers aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc" >> /etc/ssh/sshd_config
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Use Only Approved Ciphers
  lineinfile:
    create: yes
    dest: /etc/ssh/sshd_config
    regexp: ^Ciphers
    line: Ciphers aes128-ctr,aes192-ctr,aes256-ctr,aes128-cbc,3des-cbc,aes192-cbc,aes256-cbc
    validate: sshd -t -f %s
  #notify: restart sshd
  tags:
    - sshd_use_approved_ciphers
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-SI-7
    - NIST-800-53-AC-3
    - NIST-800-53-AC-17(2)
    - NIST-800-53-AU-10(5)
    - NIST-800-53-CM-6(b)
    - NIST-800-53-IA-5(1)(c)
    - NIST-800-53-IA-7
    - NIST-800-171-3.1.13
    - NIST-800-171-3.13.11
    - NIST-800-171-3.13.8
    - CJIS-5.5.6
    - DISA-STIG-RHEL-06-000243

Disable SSH Server If Possible (Unusual)   [ref]rule

The SSH server service, sshd, is commonly needed. However, if it can be disabled, do so. The sshd service can be disabled with the following command:

$ sudo chkconfig sshd off
This is unusual, as SSH is a common method for encrypted and authenticated remote access.

Rationale:

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'sshd' disable
/sbin/chkconfig --level 0123456 'sshd' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service sshd
  service:
    name: sshd
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_sshd_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - low_disruption

System Settings   [ref]group

Contains rules that check correct system settings.

contains 189 rules

Installing and Maintaining Software   [ref]group

The following sections contain information on security-relevant choices during the initial operating system installation process and the setup of software updates.

contains 18 rules

Disk Partitioning   [ref]group

To ensure separation and protection of data, there are top-level system directories which should be placed on their own physical partition or logical volume. The installer's default partitioning scheme creates separate logical volumes for /, /boot, and swap.

  • If starting with any of the default layouts, check the box to \"Review and modify partitioning.\" This allows for the easy creation of additional logical volumes inside the volume group already created, though it may require making /'s logical volume smaller to create space. In general, using logical volumes is preferable to using partitions because they can be more easily adjusted later.
  • If creating a custom layout, create the partitions mentioned in the previous paragraph (which the installer will require anyway), as well as separate ones described in the following sections.
If a system has already been installed, and the default partitioning scheme was used, it is possible but nontrivial to modify it to create separate logical volumes for the directories listed above. The Logical Volume Manager (LVM) makes this possible. See the LVM HOWTO at http://tldp.org/HOWTO/LVM-HOWTO/ for more detailed information on LVM.

contains 5 rules

Ensure /home Located On Separate Partition   [ref]rule

If user home directories will be stored locally, create a separate partition for /home at installation time (or migrate it later using LVM). If /home will be mounted from another system such as an NFS server, then creating a separate partition is not necessary at installation time, and the mountpoint can instead be configured later.

Rationale:

Ensuring that /home is mounted on its own partition enables the setting of more restrictive mount options, and also helps ensure that users cannot trivially fill partitions used for log or audit data storage.

Severity:  low

Ensure /var Located On Separate Partition   [ref]rule

The /var directory is used by daemons and other system services to store frequently-changing data. Ensure that /var has its own partition or logical volume at installation time, or migrate it using LVM.

Rationale:

Ensuring that /var is mounted on its own partition enables the setting of more restrictive mount options. This helps protect system services such as daemons or other programs which use it. It is not uncommon for the /var directory to contain world-writable directories installed by other software packages.

Severity:  low

Ensure /tmp Located On Separate Partition   [ref]rule

The /tmp directory is a world-writable directory used for temporary file storage. Ensure it has its own partition or logical volume at installation time, or migrate it using LVM.

Rationale:

The /tmp partition is used as temporary storage by many programs. Placing /tmp in its own partition enables the setting of more restrictive mount options, which can help protect programs which use it.

Severity:  low

Ensure /var/log/audit Located On Separate Partition   [ref]rule

Audit logs are stored in the /var/log/audit directory. Ensure that it has its own partition or logical volume at installation time, or migrate it later using LVM. Make absolutely certain that it is large enough to store all audit logs that will be created by the auditing daemon.

Rationale:

Placing /var/log/audit in its own partition enables better separation between audit files and other files, and helps ensure that auditing cannot be halted due to the partition running out of space.

Severity:  low

Ensure /var/log Located On Separate Partition   [ref]rule

System logs are stored in the /var/log directory. Ensure that it has its own partition or logical volume at installation time, or migrate it using LVM.

Rationale:

Placing /var/log in its own partition enables better separation between log files and other files in /var/.

Severity:  unknown

System and Software Integrity   [ref]group

System and software integrity can be gained by installing antivirus, increasing system encryption strength with FIPS, verifying installed software, enabling SELinux, installing an Intrusion Prevention System, etc. However, installing or enabling integrity checking tools cannot prevent intrusions, but they can detect that an intrusion may have occurred. Requirements for integrity checking may be highly dependent on the environment in which the system will be used. Snapshot-based approaches such as AIDE may induce considerable overhead in the presence of frequent software updates.

contains 5 rules

Software Integrity Checking   [ref]group

Both the AIDE (Advanced Intrusion Detection Environment) software and the RPM package management system provide mechanisms for verifying the integrity of installed software. AIDE uses snapshots of file metadata (such as hashes) and compares these to current system files in order to detect changes.

The RPM package management system can conduct integrity checks by comparing information in its metadata database with files installed on the system.

contains 4 rules

Verify Integrity with RPM   [ref]group

The RPM package management system includes the ability to verify the integrity of installed packages by comparing the installed files with information about the files taken from the package metadata stored in the RPM database. Although an attacker could corrupt the RPM database (analogous to attacking the AIDE database as described above), this check can still reveal modification of important files. To list which files on the system differ from what is expected by the RPM database:

$ rpm -qVa
See the man page for rpm to see a complete explanation of each column.

contains 2 rules

Verify and Correct File Permissions with RPM   [ref]rule

The RPM package management system can check file access permissions of installed software packages, including many that are important to system security. Verify that the file permissions of system files and commands match vendor values. Check the file permissions with the following command:

$ sudo rpm -Va | grep '^.M'
Output indicates files that do not match vendor defaults. After locating a file with incorrect permissions, run the following command to determine which package owns it:
$ rpm -qf FILENAME

Next, run the following command to reset its permissions to the correct values:
$ sudo rpm --quiet --setperms PACKAGENAME

Warning:  Note: Due to a bug in the gdm package, the RPM verify command may continue to fail even after file permissions have been correctly set on /var/log/gdm. This is being tracked in Red Hat Bugzilla #1277603.
Rationale:

Permissions on system binaries and configuration files that are too generous could allow an unauthorized user to gain privileges that they should not have. The permissions set by the vendor should be maintained. Any deviations from this baseline should be investigated.

Severity:  high

Remediation Shell script:   (show)

Complexity:high
Disruption:medium
Strategy:restrict

# Declare array to hold list of RPM packages we need to correct permissions for
declare -a SETPERMS_RPM_LIST

# Create a list of files on the system having permissions different from what
# is expected by the RPM database
FILES_WITH_INCORRECT_PERMS=($(rpm -Va --nofiledigest | grep '^.M' | awk '{print $NF}'))

# For each file path from that list:
# * Determine the RPM package the file path is shipped by,
# * Include it into SETPERMS_RPM_LIST array

for FILE_PATH in "${FILES_WITH_INCORRECT_PERMS[@]}"
do
	RPM_PACKAGE=$(rpm -qf "$FILE_PATH")
	SETPERMS_RPM_LIST=("${SETPERMS_RPM_LIST[@]}" "$RPM_PACKAGE")
done

# Remove duplicate mention of same RPM in $SETPERMS_RPM_LIST (if any)
SETPERMS_RPM_LIST=( $(echo "${SETPERMS_RPM_LIST[@]}" | tr ' ' '\n' | sort -u | tr '\n' ' ') )

# For each of the RPM packages left in the list -- reset its permissions to the
# correct values
for RPM_PACKAGE in "${SETPERMS_RPM_LIST[@]}"
do
	rpm --quiet --setperms "${RPM_PACKAGE}"
done
Remediation Ansible snippet:   (show)

Complexity:high
Disruption:medium
Strategy:restrict
- name: "Read list of files with incorrect permissions"
  shell: "rpm -Va --nofiledigest | awk '/^.M/ {print $NF}'"
  register: files_with_incorrect_permissions
  failed_when: False
  changed_when: False
  check_mode: no
  tags:
    - rpm_verify_permissions
    - high_severity
    - restrict_strategy
    - high_complexity
    - medium_disruption
    - NIST-800-53-SI-7
    - NIST-800-53-AC-6
    - NIST-800-53-AU-9(1)
    - NIST-800-53-AU-9(3)
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-171-3.3.8
    - NIST-800-171-3.4.1
    - PCI-DSS-Req-11.5
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000518

- name: "Correct file permissions with RPM"
  shell: "rpm --quiet --setperms $(rpm -qf '{{item}}')"
  with_items: "{{ files_with_incorrect_permissions.stdout_lines }}"
  when: files_with_incorrect_permissions.stdout_lines | length > 0
  tags:
    - rpm_verify_permissions
    - high_severity
    - restrict_strategy
    - high_complexity
    - medium_disruption
    - NIST-800-53-SI-7
    - NIST-800-53-AC-6
    - NIST-800-53-AU-9(1)
    - NIST-800-53-AU-9(3)
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-171-3.3.8
    - NIST-800-171-3.4.1
    - PCI-DSS-Req-11.5
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000518

Verify File Hashes with RPM   [ref]rule

Without cryptographic integrity protections, system executables and files can be altered by unauthorized users without detection. The RPM package management system can check the hashes of installed software packages, including many that are important to system security. To verify that the cryptographic hash of system files and commands match vendor values, run the following command to list which files on the system have hashes that differ from what is expected by the RPM database:

$ rpm -Va | grep '^..5'
A "c" in the second column indicates that a file is a configuration file, which may appropriately be expected to change. If the file was not expected to change, investigate the cause of the change using audit logs or other means. The package can then be reinstalled to restore the file. Run the following command to determine which package owns the file:
$ rpm -qf FILENAME
The package can be reinstalled from a yum repository using the command:
$ sudo yum reinstall PACKAGENAME
Alternatively, the package can be reinstalled from trusted media using the command:
$ sudo rpm -Uvh PACKAGENAME

Rationale:

The hashes of important files like system executables should match the information given by the RPM database. Executables with erroneous hashes could be a sign of nefarious activity on the system.

Severity:  high

Remediation Shell script:   (show)


# Find which files have incorrect hash (not in /etc, because there are all system related config. files) and then get files names
files_with_incorrect_hash="$(rpm -Va | grep -E '^..5.* /(bin|sbin|lib|lib64|usr)/' | awk '{print $NF}' )"
# From files names get package names and change newline to space, because rpm writes each package to new line
packages_to_reinstall="$(rpm -qf $files_with_incorrect_hash | tr '\n' ' ')"

yum reinstall -y $packages_to_reinstall
Remediation Ansible snippet:   (show)

Complexity:high
Disruption:medium
- name: "Set fact: Package manager reinstall command (dnf)"
  set_fact:
    package_manager_reinstall_cmd: dnf reinstall -y
  when: ansible_distribution == "Fedora"
  tags:
    - rpm_verify_hashes
    - high_severity
    - unknown_strategy
    - high_complexity
    - medium_disruption
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-53-SI-7(1)
    - NIST-800-171-3.3.8
    - NIST-800-171-3.4.1
    - PCI-DSS-Req-11.5
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000519

- name: "Set fact: Package manager reinstall command (yum)"
  set_fact:
    package_manager_reinstall_cmd: yum reinstall -y
  when: ansible_distribution == "RedHat" or ansible_distribution == "OracleLinux"
  tags:
    - rpm_verify_hashes
    - high_severity
    - unknown_strategy
    - high_complexity
    - medium_disruption
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-53-SI-7(1)
    - NIST-800-171-3.3.8
    - NIST-800-171-3.4.1
    - PCI-DSS-Req-11.5
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000519

- name: "Read files with incorrect hash"
  shell: "rpm -Va | grep -E '^..5.* /(bin|sbin|lib|lib64|usr)/' | awk '{print $NF}'"
  register: files_with_incorrect_hash
  changed_when: False
  when: package_manager_reinstall_cmd is defined
  check_mode: no
  tags:
    - rpm_verify_hashes
    - high_severity
    - unknown_strategy
    - high_complexity
    - medium_disruption
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-53-SI-7(1)
    - NIST-800-171-3.3.8
    - NIST-800-171-3.4.1
    - PCI-DSS-Req-11.5
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000519

- name: "Reinstall packages of files with incorrect hash"
  shell: "{{package_manager_reinstall_cmd}} $(rpm -qf '{{item}}')"
  with_items: "{{ files_with_incorrect_hash.stdout_lines }}"
  when: package_manager_reinstall_cmd is defined and (files_with_incorrect_hash.stdout_lines | length > 0)
  tags:
    - rpm_verify_hashes
    - high_severity
    - unknown_strategy
    - high_complexity
    - medium_disruption
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-53-SI-7(1)
    - NIST-800-171-3.3.8
    - NIST-800-171-3.4.1
    - PCI-DSS-Req-11.5
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000519

Verify Integrity with AIDE   [ref]group

AIDE conducts integrity checks by comparing information about files with previously-gathered information. Ideally, the AIDE database is created immediately after initial system configuration, and then again after any software update. AIDE is highly configurable, with further configuration information located in /usr/share/doc/aide-VERSION.

contains 2 rules

Install AIDE   [ref]rule

The aide package can be installed with the following command:

$ sudo yum install aide

Rationale:

The AIDE package must be installed if it is to be available for integrity checking.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable
# Function to install packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_install aide
#
function package_install {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_install 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if ! rpm -q --quiet "$package"; then
    dnf install -y "$package"
  fi
elif which yum ; then
  if ! rpm -q --quiet "$package"; then
    yum install -y "$package"
  fi
elif which apt-get ; then
  apt-get install -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_install aide
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Ensure aide is installed
  package:
    name: aide
    state: present
  tags:
    - package_aide_installed
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-3(d)
    - NIST-800-53-CM-3(e)
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-53-SC-28
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - CJIS-5.10.1.3
    - DISA-STIG-RHEL-06-000016
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
include install_aide

class install_aide {
  package { 'aide':
    ensure => 'installed',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable

package --add=aide

Build and Test AIDE Database   [ref]rule

Run the following command to generate a new database:

$ sudo /usr/sbin/aide --init
By default, the database will be written to the file /var/lib/aide/aide.db.new.gz. Storing the database, the configuration file /etc/aide.conf, and the binary /usr/sbin/aide (or hashes of these files), in a secure location (such as on read-only media) provides additional assurance about their integrity. The newly-generated database can be installed as follows:
$ sudo cp /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz
To initiate a manual check, run the following command:
$ sudo /usr/sbin/aide --check
If this check produces any unexpected output, investigate.

Rationale:

For AIDE to be effective, an initial database of "known-good" information about files must be captured and it should be able to be verified against the installed files.

Severity:  medium

Remediation Shell script:   (show)

# Function to install packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_install aide
#
function package_install {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_install 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if ! rpm -q --quiet "$package"; then
    dnf install -y "$package"
  fi
elif which yum ; then
  if ! rpm -q --quiet "$package"; then
    yum install -y "$package"
  fi
elif which apt-get ; then
  apt-get install -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_install aide

/usr/sbin/aide --init
/bin/cp -p /var/lib/aide/aide.db.new.gz /var/lib/aide/aide.db.gz
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: "Ensure AIDE is installed"
  package:
    name: "{{item}}"
    state: present
  with_items:
    - aide
  tags:
    - aide_build_database
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-3(d)
    - NIST-800-53-CM-3(e)
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-53-SC-28
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - CJIS-5.10.1.3
    - DISA-STIG-RHEL-06-000018

- name: "Build and Test AIDE Database"
  shell: /usr/sbin/aide --init
  tags:
    - aide_build_database
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-3(d)
    - NIST-800-53-CM-3(e)
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-53-SC-28
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - CJIS-5.10.1.3
    - DISA-STIG-RHEL-06-000018

# mainly to allow ansible's check mode to work
- name: "Check whether the stock AIDE Database exists"
  stat:
    path: /var/lib/aide/aide.db.new.gz
  register: aide_database_stat
  tags:
    - aide_build_database
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-3(d)
    - NIST-800-53-CM-3(e)
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-53-SC-28
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - CJIS-5.10.1.3
    - DISA-STIG-RHEL-06-000018

- name: "Stage AIDE Database"
  copy:
    src: /var/lib/aide/aide.db.new.gz
    dest: /var/lib/aide/aide.db.gz
    backup: yes
    remote_src: yes
  when: aide_database_stat.stat.exists is defined and aide_database_stat.stat.exists
  tags:
    - aide_build_database
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-CM-3(d)
    - NIST-800-53-CM-3(e)
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-6(3)
    - NIST-800-53-SC-28
    - NIST-800-53-SI-7
    - PCI-DSS-Req-11.5
    - CJIS-5.10.1.3
    - DISA-STIG-RHEL-06-000018

Updating Software   [ref]group

The yum command line tool is used to install and update software packages. The system also provides a graphical software update tool in the System menu, in the Administration submenu, called Software Update.

Red Hat Enterprise Linux 6 systems contain an installed software catalog called the RPM database, which records metadata of installed packages. Consistently using yum or the graphical Software Update for all software installation allows for insight into the current inventory of installed software on the system.

contains 3 rules

Ensure gpgcheck Enabled For All yum Package Repositories   [ref]rule

To ensure signature checking is not disabled for any repos, remove any lines from files in /etc/yum.repos.d of the form:

gpgcheck=0

Rationale:

Verifying the authenticity of the software prior to installation validates the integrity of the patch or upgrade received from a vendor. This ensures the software has not been tampered with and that it has been provided by a trusted vendor. Self-signed certificates are disallowed by this requirement. Certificates used to verify the software must be from an approved Certificate Authority (CA).

Severity:  high

Remediation Shell script:   (show)

sed -i 's/gpgcheck=.*/gpgcheck=1/g' /etc/yum.repos.d/*
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
#
- name: Find All yum Repositories
  find:
    paths: "/etc/yum.repos.d/"
    patterns: "*.repo"
  register: yum_find

- name: Ensure gpgcheck Enabled For All yum Package Repositories
  with_items: "{{ yum_find.files }}"
  lineinfile:
    create: yes
    dest: "{{ item.path }}"
    regexp: '^gpgcheck'
    line: 'gpgcheck=1'
  tags:
    - ensure_gpgcheck_never_disabled
    - high_severity
    - unknown_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-5(3)
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - NIST-800-171-3.4.8
    - PCI-DSS-Req-6.2
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000015

Ensure Red Hat GPG Key Installed   [ref]rule

To ensure the system can cryptographically verify base software packages come from Red Hat (and to connect to the Red Hat Network to receive them), the Red Hat GPG key must properly be installed. To install the Red Hat GPG key, run:

$ sudo subscription-manager register
If the system is not connected to the Internet or an RHN Satellite, then install the Red Hat GPG key from trusted media such as the Red Hat installation CD-ROM or DVD. Assuming the disc is mounted in /media/cdrom, use the following command as the root user to import it into the keyring:
$ sudo rpm --import /media/cdrom/RPM-GPG-KEY

Rationale:

Changes to software components can have significant effects on the overall security of the operating system. This requirement ensures the software has not been tampered with and that it has been provided by a trusted vendor. The Red Hat GPG key is necessary to cryptographically verify packages are from Red Hat.

Severity:  high

Remediation Shell script:   (show)

# The two fingerprints below are retrieved from https://access.redhat.com/security/team/key
readonly REDHAT_RELEASE_2_FINGERPRINT="567E 347A D004 4ADE 55BA 8A5F 199E 2F91 FD43 1D51"
readonly REDHAT_AUXILIARY_FINGERPRINT="43A6 E49C 4A38 F4BE 9ABF 2A53 4568 9C88 2FA6 58E0"
# Location of the key we would like to import (once it's integrity verified)
readonly REDHAT_RELEASE_KEY="/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"

RPM_GPG_DIR_PERMS=$(stat -c %a "$(dirname "$REDHAT_RELEASE_KEY")")

# Verify /etc/pki/rpm-gpg directory permissions are safe
if [ "${RPM_GPG_DIR_PERMS}" -le "755" ]
then
  # If they are safe, try to obtain fingerprints from the key file
  # (to ensure there won't be e.g. CRC error).
  IFS=$'\n' GPG_OUT=($(gpg --with-fingerprint "${REDHAT_RELEASE_KEY}" | grep 'Key fingerprint ='))
  GPG_RESULT=$?
  # Reset IFS back to default
  unset IFS
  # No CRC error, safe to proceed
  if [ "${GPG_RESULT}" -eq "0" ]
  then
    tr -s ' ' <<< "${GPG_OUT}" | grep -vE "${REDHAT_RELEASE_2_FINGERPRINT}|${REDHAT_AUXILIARY_FINGERPRINT}" || {
      # If file doesn't contains any keys with unknown fingerprint, import it
      rpm --import "${REDHAT_RELEASE_KEY}"
    }
  fi
fi
Remediation Ansible snippet:   (show)

Complexity:medium
Disruption:medium
Strategy:restrict
- name: "Read permission of GPG key directory"
  stat:
    path: /etc/pki/rpm-gpg/
  register: gpg_key_directory_permission
  check_mode: no
  tags:
    - ensure_redhat_gpgkey_installed
    - high_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - NIST-800-53-CM-5(3)
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - NIST-800-171-3.4.8
    - PCI-DSS-Req-6.2
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000008

# It should fail if it doesn't find any fingerprints in file - maybe file was not parsed well.

- name: Read signatures in GPG key
  shell: gpg --with-fingerprint '/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release' | grep 'Key fingerprint =' | tr -s ' ' | sed 's;.*= ;;g'
  changed_when: False
  register: gpg_fingerprints
  check_mode: no
  tags:
    - ensure_redhat_gpgkey_installed
    - high_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - NIST-800-53-CM-5(3)
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - NIST-800-171-3.4.8
    - PCI-DSS-Req-6.2
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000008

- name: Set Fact - Valid fingerprints
  set_fact:
     gpg_valid_fingerprints: ("567E 347A D004 4ADE 55BA 8A5F 199E 2F91 FD43 1D51" "43A6 E49C 4A38 F4BE 9ABF 2A53 4568 9C88 2FA6 58E0")
  tags:
    - ensure_redhat_gpgkey_installed
    - high_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - NIST-800-53-CM-5(3)
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - NIST-800-171-3.4.8
    - PCI-DSS-Req-6.2
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000008

- name: Import RedHat GPG key
  rpm_key:
    state: present
    key: /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
  when:
    (gpg_key_directory_permission.stat.mode <= '0755')
    and (( gpg_fingerprints.stdout_lines | difference(gpg_valid_fingerprints)) | length == 0)
    and (gpg_fingerprints.stdout_lines | length > 0)
    and (ansible_distribution == "RedHat")
  tags:
    - ensure_redhat_gpgkey_installed
    - high_severity
    - restrict_strategy
    - medium_complexity
    - medium_disruption
    - NIST-800-53-CM-5(3)
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - NIST-800-171-3.4.8
    - PCI-DSS-Req-6.2
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000008

Ensure gpgcheck Enabled In Main yum Configuration   [ref]rule

The gpgcheck option controls whether RPM packages' signatures are always checked prior to installation. To configure yum to check package signatures before installing them, ensure the following line appears in /etc/yum.conf in the [main] section:

gpgcheck=1

Rationale:

Changes to any software components can have significant effects on the overall security of the operating system. This requirement ensures the software has not been tampered with and that it has been provided by a trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must be signed with a certificate recognized and approved by the organization.
Verifying the authenticity of the software prior to installation validates the integrity of the patch or upgrade received from a vendor. This ensures the software has not been tampered with and that it has been provided by a trusted vendor. Self-signed certificates are disallowed by this requirement. Certificates used to verify the software must be from an approved Certificate Authority (CA).

Severity:  high

Remediation Shell script:   (show)

# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append "/etc/yum.conf" '^gpgcheck' '1' ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
- name: Check existence of yum on Fedora
  stat:
    path: /etc/yum.conf
  register: yum_config_file
  check_mode: no
  when: ansible_distribution == "Fedora"

# Old versions of Fedora use yum

- name: Ensure GPG check is globally activated (yum)
  ini_file:
    dest: "{{item}}"
    section: main
    option: gpgcheck
    value: 1
    create: False
  with_items: "/etc/yum.conf"
  when: ansible_distribution == "RedHat" or ansible_distribution == "CentOS" or yum_config_file.stat.exists
  tags:
    - ensure_gpgcheck_globally_activated
    - high_severity
    - unknown_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-5(3)
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - NIST-800-171-3.4.8
    - PCI-DSS-Req-6.2
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000013

- name: Ensure GPG check is globally activated (dnf)
  ini_file:
    dest: "{{item}}"
    section: main
    option: gpgcheck
    value: 1
    create: False
  with_items: "/etc/dnf/dnf.conf"
  when: ansible_distribution == "Fedora"
  tags:
    - ensure_gpgcheck_globally_activated
    - high_severity
    - unknown_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-5(3)
    - NIST-800-53-SI-7
    - NIST-800-53-MA-1(b)
    - NIST-800-171-3.4.8
    - PCI-DSS-Req-6.2
    - CJIS-5.10.4.1
    - DISA-STIG-RHEL-06-000013

GNOME Desktop Environment   [ref]group

GNOME is a graphical desktop environment bundled with many Linux distributions that allow users to easily interact with the operating system graphically rather than textually. The GNOME Graphical Display Manager (GDM) provides login, logout, and user switching contexts as well as display server management.

GNOME is developed by the GNOME Project and is considered the default Red Hat Graphical environment.

For more information on GNOME and the GNOME Project, see https://www.gnome.org.

contains 5 rules

Configure GNOME Screen Locking   [ref]group

In the default GNOME desktop, the screen can be locked by choosing Lock Screen from the System menu.

The gconftool-2 program can be used to enforce mandatory screen locking settings for the default GNOME environment. The following sections detail commands to enforce idle activation of the screensaver, screen locking, a blank-screen screensaver, and an idle activation time.

Because users should be trained to lock the screen when they step away from the computer, the automatic locking feature is only meant as a backup. The Lock Screen icon from the System menu can also be dragged to the taskbar in order to facilitate even more convenient screen-locking.

The root account cannot be screen-locked, but this should have no practical effect as the root account should never be used to log into an X Windows environment, and should only be used to for direct login via console in emergency circumstances.

For more information about configuring GNOME screensaver, see http://live.gnome.org/GnomeScreensaver. For more information about enforcing preferences in the GNOME environment using the GConf configuration system, see http://projects.gnome.org/gconf and the man page gconftool-2(1).

contains 3 rules

Enable Screen Lock Activation After Idle Period   [ref]rule

Run the following command to activate locking of the screensaver in the GNOME desktop when it is activated:

$ sudo gconftool-2 --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type bool \
  --set /apps/gnome-screensaver/lock_enabled true

Rationale:

Enabling the activation of the screen lock after an idle period ensures password entry will be required in order to access the system, preventing access by passersby.

Severity:  medium

Remediation Shell script:   (show)

# Install GConf2 package if not installed
if ! rpm -q GConf2; then
  yum -y install GConf2
fi

# Set the screensaver locking activation in the GNOME desktop when the
# screensaver is activated
gconftool-2 --direct \
            --config-source "xml:readwrite:/etc/gconf/gconf.xml.mandatory" \
            --type bool \
            --set /apps/gnome-screensaver/lock_enabled true

GNOME Desktop Screensaver Mandatory Use   [ref]rule

Run the following command to activate the screensaver in the GNOME desktop after a period of inactivity:

$ sudo gconftool-2 --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type bool \
  --set /apps/gnome-screensaver/idle_activation_enabled true

Rationale:

Enabling idle activation of the screensaver ensures the screensaver will be activated after the idle delay. Applications requiring continuous, real-time screen display (such as network management products) require the login session does not have administrator rights and the display station is located in a controlled-access area.

Severity:  medium

Remediation Shell script:   (show)

# Install GConf2 package if not installed
if ! rpm -q GConf2; then
  yum -y install GConf2
fi

# Set the screensaver activation in the GNOME desktop after a period of inactivity
gconftool-2 --direct \
            --config-source "xml:readwrite:/etc/gconf/gconf.xml.mandatory" \
            --type bool \
            --set /apps/gnome-screensaver/idle_activation_enabled true

Set GNOME Login Inactivity Timeout   [ref]rule

Run the following command to set the idle time-out value for inactivity in the GNOME desktop to 900 minutes:

$ sudo gconftool-2 \
  --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type int \
  --set /desktop/gnome/session/idle_delay 900

Rationale:

Setting the idle delay controls when the screensaver will start, and can be combined with screen locking to prevent access from passersby.

Severity:  medium

Remediation Shell script:   (show)


inactivity_timeout_value="900"

# Install GConf2 package if not installed
if ! rpm -q GConf2; then
  yum -y install GConf2
fi

# Set the idle time-out value for inactivity in the GNOME desktop to meet the
# requirement
gconftool-2 --direct \
            --config-source "xml:readwrite:/etc/gconf/gconf.xml.mandatory" \
            --type int \
            --set /desktop/gnome/session/idle_delay ${inactivity_timeout_value}

GNOME Media Settings   [ref]group

GNOME media settings that apply to the graphical interface.

contains 2 rules

Disable GNOME Automounting   [ref]rule

The system's default desktop environment, GNOME, will mount devices and removable media (such as DVDs, CDs and USB flash drives) whenever they are inserted into the system. Disable automount and autorun within GNOME by running the following:

$ sudo gconftool-2 --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type bool \
  --set /apps/nautilus/preferences/media_automount false
$ sudo gconftool-2 --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type bool \
  --set /apps/nautilus/preferences/media_autorun_never true

Rationale:

Disabling automatic mounting in GNOME can prevent the introduction of malware via removable media. It will, however, also prevent desktop users from legitimate use of removable media.

Severity:  unknown

References:  AC-19(a), AC-19(d), AC-19(e)

Disable All GNOME Thumbnailers   [ref]rule

The system's default desktop environment, GNOME, uses a number of different thumbnailer programs to generate thumbnails for any new or modified content in an opened folder. The following command can disable the execution of these thumbnail applications:

$ sudo gconftool-2 --direct \
  --config-source xml:readwrite:/etc/gconf/gconf.xml.mandatory \
  --type bool \
  --set /desktop/gnome/thumbnailers/disable_all true
This effectively prevents an attacker from gaining access to a system through a flaw in GNOME's Nautilus thumbnail creators.

Rationale:

An attacker with knowledge of a flaw in a GNOME thumbnailer application could craft a malicious file to exploit this flaw. Assuming the attacker could place the malicious file on the local filesystem (via a web upload for example) and assuming a user browses the same location using Nautilus, the malicious file would exploit the thumbnailer with the potential for malicious code execution. It is best to disable these thumbnailer applications unless they are explicitly required.

Severity:  unknown

References:  CM-7

Configure Syslog   [ref]group

The syslog service has been the default Unix logging mechanism for many years. It has a number of downsides, including inconsistent log format, lack of authentication for received messages, and lack of authentication, encryption, or reliable transport for messages sent over a network. However, due to its long history, syslog is a de facto standard which is supported by almost all Unix applications.

In Red Hat Enterprise Linux 6, rsyslog has replaced ksyslogd as the syslog daemon of choice, and it includes some additional security features such as reliable, connection-oriented (i.e. TCP) transmission of logs, the option to log to database formats, and the encryption of log data en route to a central logging server. This section discusses how to configure rsyslog for best effect, and how to use tools provided with the system to maintain and monitor logs.

contains 10 rules

Rsyslog Logs Sent To Remote Host   [ref]group

If system logs are to be useful in detecting malicious activities, it is necessary to send logs to a remote server. An intruder who has compromised the root account on a system may delete the log entries which indicate that the system was attacked before they are seen by an administrator.

However, it is recommended that logs be stored on the local host in addition to being sent to the loghost, especially if rsyslog has been configured to use the UDP protocol to send messages over a network. UDP does not guarantee reliable delivery, and moderately busy sites will lose log messages occasionally, especially in periods of high traffic which may be the result of an attack. In addition, remote rsyslog messages are not authenticated in any way by default, so it is easy for an attacker to introduce spurious messages to the central log server. Also, some problems cause loss of network connectivity, which will prevent the sending of messages to the central server. For all of these reasons, it is better to store log messages both centrally and on each host, so that they can be correlated if necessary.

contains 1 rule

Ensure Logs Sent To Remote Host   [ref]rule

To configure rsyslog to send logs to a remote log server, open /etc/rsyslog.conf and read and understand the last section of the file, which describes the multiple directives necessary to activate remote logging. Along with these other directives, the system can be configured to forward its logs to a particular log server by adding or correcting one of the following lines, substituting loghost.example.com appropriately. The choice of protocol depends on the environment of the system; although TCP and RELP provide more reliable message delivery, they may not be supported in all environments.
To use UDP for log message delivery:

*.* @loghost.example.com

To use TCP for log message delivery:
*.* @@loghost.example.com

To use RELP for log message delivery:
*.* :omrelp:loghost.example.com

There must be a resolvable DNS CNAME or Alias record set to "logcollector" for logs to be sent correctly to the centralized logging utility.

Rationale:

A log server (loghost) receives syslog messages from one or more systems. This data can be used as an additional log source in the event a system is compromised and its local logs are suspect. Forwarding log messages to a remote loghost also provides system administrators with a centralized place to view the status of multiple hosts within the enterprise.

Severity:  unknown

Remediation Shell script:   (show)


rsyslog_remote_loghost_address="logcollector"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/rsyslog.conf' '^\*\.\*' "@@$rsyslog_remote_loghost_address" '' '%s %s'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value rsyslog_remote_loghost_address # promote to variable
  set_fact:
    rsyslog_remote_loghost_address: !!str |-
        logcollector
  tags:
    - always

- name: "Set rsyslog remote loghost"
  lineinfile:
    dest: /etc/rsyslog.conf
    regexp: "^\\*\\.\\*"
    line: "*.* @@{{ rsyslog_remote_loghost_address }}"
    create: yes
  tags:
    - rsyslog_remote_loghost
    - unknown_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AU-3(2)
    - NIST-800-53-AU-4(1)
    - NIST-800-53-AU-9
    - DISA-STIG-RHEL-06-000136

Ensure Proper Configuration of Log Files   [ref]group

The file /etc/rsyslog.conf controls where log message are written. These are controlled by lines called rules, which consist of a selector and an action. These rules are often customized depending on the role of the system, the requirements of the environment, and whatever may enable the administrator to most effectively make use of log data. The default rules in Red Hat Enterprise Linux 6 are:

*.info;mail.none;authpriv.none;cron.none                /var/log/messages
authpriv.*                                              /var/log/secure
mail.*                                                  -/var/log/maillog
cron.*                                                  /var/log/cron
*.emerg                                                 *
uucp,news.crit                                          /var/log/spooler
local7.*                                                /var/log/boot.log
See the man page rsyslog.conf(5) for more information. Note that the rsyslog daemon can be configured to use a timestamp format that some log processing programs may not understand. If this occurs, edit the file /etc/rsyslog.conf and add or edit the following line:
$ ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

contains 3 rules

Ensure Log Files Are Owned By Appropriate User   [ref]rule

The owner of all log files written by rsyslog should be (N/A). These log files are determined by the second part of each Rule line in /etc/rsyslog.conf and typically all appear in /var/log. For each log file LOGFILE referenced in /etc/rsyslog.conf, run the following command to inspect the file's owner:

$ ls -l LOGFILE
If the owner is not (N/A), run the following command to correct this:
$ sudo chown (N/A) LOGFILE

Rationale:

The log files generated by rsyslog contain valuable information regarding system configuration, user authentication, and other such information. Log files should be protected from unauthorized access.

Severity:  medium

Ensure Log Files Are Owned By Appropriate Group   [ref]rule

The group-owner of all log files written by rsyslog should be (N/A). These log files are determined by the second part of each Rule line in /etc/rsyslog.conf and typically all appear in /var/log. For each log file LOGFILE referenced in /etc/rsyslog.conf, run the following command to inspect the file's group owner:

$ ls -l LOGFILE
If the owner is not (N/A), run the following command to correct this:
$ sudo chgrp (N/A) LOGFILE

Rationale:

The log files generated by rsyslog contain valuable information regarding system configuration, user authentication, and other such information. Log files should be protected from unauthorized access.

Severity:  medium

Ensure System Log Files Have Correct Permissions   [ref]rule

The file permissions for all log files written by rsyslog should be set to 600, or more restrictive. These log files are determined by the second part of each Rule line in /etc/rsyslog.conf and typically all appear in /var/log. For each log file LOGFILE referenced in /etc/rsyslog.conf, run the following command to inspect the file's permissions:

$ ls -l LOGFILE
If the permissions are not 600 or more restrictive, run the following command to correct this:
$ sudo chmod 0600 LOGFILE

Rationale:

Log files can contain valuable information regarding system configuration. If the system log files are not protected unauthorized users could change the logged data, eliminating their forensic value.

Severity:  medium

Remediation Shell script:   (show)


# List of log file paths to be inspected for correct permissions
# * Primarily inspect log file paths listed in /etc/rsyslog.conf
RSYSLOG_ETC_CONFIG="/etc/rsyslog.conf"
# * And also the log file paths listed after rsyslog's $IncludeConfig directive
#   (store the result into array for the case there's shell glob used as value of IncludeConfig)
RSYSLOG_INCLUDE_CONFIG=($(grep -e "\$IncludeConfig[[:space:]]\+[^[:space:];]\+" /etc/rsyslog.conf | cut -d ' ' -f 2))
# Declare an array to hold the final list of different log file paths
declare -a LOG_FILE_PATHS

# Browse each file selected above as containing paths of log files
# ('/etc/rsyslog.conf' and '/etc/rsyslog.d/*.conf' in the default configuration)
for LOG_FILE in "${RSYSLOG_ETC_CONFIG}" "${RSYSLOG_INCLUDE_CONFIG[@]}"
do
	# From each of these files extract just particular log file path(s), thus:
	# * Ignore lines starting with space (' '), comment ('#"), or variable syntax ('$') characters,
	# * Ignore empty lines,
	# * From the remaining valid rows select only fields constituting a log file path
	# Text file column is understood to represent a log file path if and only if all of the following are met:
	# * it contains at least one slash '/' character,
	# * it doesn't contain space (' '), colon (':'), and semicolon (';') characters
	# Search log file for path(s) only in case it exists!
	if [[ -f "${LOG_FILE}" ]]
	then
		MATCHED_ITEMS=$(sed -e "/^[[:space:]|#|$]/d ; s/[^\/]*[[:space:]]*\([^:;[:space:]]*\)/\1/g ; /^$/d" "${LOG_FILE}")
		# Since above sed command might return more than one item (delimited by newline), split the particular
		# matches entries into new array specific for this log file
		readarray -t ARRAY_FOR_LOG_FILE <<< "$MATCHED_ITEMS"
		# Concatenate the two arrays - previous content of $LOG_FILE_PATHS array with
		# items from newly created array for this log file
		LOG_FILE_PATHS=("${LOG_FILE_PATHS[@]}" "${ARRAY_FOR_LOG_FILE[@]}")
		# Delete the temporary array
		unset ARRAY_FOR_LOG_FILE
	fi
done

for LOG_FILE_PATH in "${LOG_FILE_PATHS[@]}"
do
	# Sanity check - if particular $LOG_FILE_PATH is empty string, skip it from further processing
	if [ -z "$LOG_FILE_PATH" ]
	then
		continue
	fi

	
	# Per https://access.redhat.com/solutions/66805 '/var/log/boot.log' log file needs special care => perform it
	# This has been fixed in RHEL7, the workaround is only necessary for RHEL6
	if [ "$LOG_FILE_PATH" == "/var/log/boot.log" ]
	then
		# Ensure permissions of /var/log/boot.log are configured to be updated in /etc/rc.local
		if ! /bin/grep -q "boot.log" "/etc/rc.local"
		then
			echo "/bin/chmod 600 /var/log/boot.log" >> /etc/rc.local
		fi
		# Ensure /etc/rc.d/rc.local has user-executable permission
		# (in order to be actually executed during boot)
		if [ "$(/usr/bin/stat -c %a /etc/rc.d/rc.local)" -ne 744 ]
		then
			/bin/chmod u+x /etc/rc.d/rc.local
		fi
	fi
	

	# Also for each log file check if its permissions differ from 600. If so, correct them
	if [ "$(/usr/bin/stat -c %a "$LOG_FILE_PATH")" -ne 600 ]
	then
		/bin/chmod 600 "$LOG_FILE_PATH"
	fi
done

Configure Logwatch on the Central Log Server   [ref]group

Is this system the central log server? If so, edit the file /etc/logwatch/conf/logwatch.conf as shown below.

contains 1 rule

Configure Logwatch SplitHosts Line   [ref]rule

If SplitHosts is set, Logwatch will separate entries by hostname. This makes the report longer but significantly more usable. If it is not set, then Logwatch will not report which host generated a given log entry, and that information is almost always necessary

 SplitHosts = yes 

Rationale:

Severity:  unknown

Configure rsyslogd to Accept Remote Messages If Acting as a Log Server   [ref]group

By default, rsyslog does not listen over the network for log messages. If needed, modules can be enabled to allow the rsyslog daemon to receive messages from other systems and for the system thus to act as a log server. If the system is not a log server, then lines concerning these modules should remain commented out.

contains 1 rule

Ensure rsyslog Does Not Accept Remote Messages Unless Acting As Log Server   [ref]rule

The rsyslog daemon should not accept remote messages unless the system acts as a log server. To ensure that it is not listening on the network, ensure the following lines are not found in /etc/rsyslog.conf:

$ModLoad imtcp
$InputTCPServerRun port
$ModLoad imudp
$UDPServerRun port
$ModLoad imrelp
$InputRELPServerRun port

Rationale:

Any process which receives messages from the network incurs some risk of receiving malicious messages. This risk can be eliminated for rsyslog by configuring it not to listen on the network.

Severity:  unknown

Ensure All Logs are Rotated by logrotate   [ref]group

Edit the file /etc/logrotate.d/syslog. Find the first line, which should look like this (wrapped for clarity):

/var/log/messages /var/log/secure /var/log/maillog /var/log/spooler \
  /var/log/boot.log /var/log/cron {
Edit this line so that it contains a one-space-separated listing of each log file referenced in /etc/rsyslog.conf.

All logs in use on a system must be rotated regularly, or the log files will consume disk space over time, eventually interfering with system operation. The file /etc/logrotate.d/syslog is the configuration file used by the logrotate program to maintain all log files written by syslog. By default, it rotates logs weekly and stores four archival copies of each log. These settings can be modified by editing /etc/logrotate.conf, but the defaults are sufficient for purposes of this guide.

Note that logrotate is run nightly by the cron job /etc/cron.daily/logrotate. If particularly active logs need to be rotated more often than once a day, some other mechanism must be used.

contains 1 rule

Ensure Logrotate Runs Periodically   [ref]rule

The logrotate utility allows for the automatic rotation of log files. The frequency of rotation is specified in /etc/logrotate.conf, which triggers a cron task. To configure logrotate to run daily, add or correct the following line in /etc/logrotate.conf:

# rotate log files frequency
daily

Rationale:

Log files that are not properly rotated run the risk of growing so large that they fill up the /var/log partition. Valuable logging information could be lost if the /var/log partition becomes full.

Severity:  unknown

Remediation Shell script:   (show)


LOGROTATE_CONF_FILE="/etc/logrotate.conf"
CRON_DAILY_LOGROTATE_FILE="/etc/cron.daily/logrotate"

# daily rotation is configured
grep -q "^daily$" $LOGROTATE_CONF_FILE|| echo "daily" >> $LOGROTATE_CONF_FILE

# remove any line configuring weekly, monthly or yearly rotation
sed -i -r "/^(weekly|monthly|yearly)$/d" $LOGROTATE_CONF_FILE

# configure cron.daily if not already
if ! grep -q "^[[:space:]]*/usr/sbin/logrotate[[:alnum:][:blank:][:punct:]]*$LOGROTATE_CONF_FILE$" $CRON_DAILY_LOGROTATE_FILE; then
	echo "#!/bin/sh" > $CRON_DAILY_LOGROTATE_FILE
	echo "/usr/sbin/logrotate $LOGROTATE_CONF_FILE" >> $CRON_DAILY_LOGROTATE_FILE
fi

Enable rsyslog Service   [ref]rule

The rsyslog service provides syslog-style logging by default on Red Hat Enterprise Linux 6. The rsyslog service can be enabled with the following command:

$ sudo chkconfig --level 2345 rsyslog on

Rationale:

The rsyslog service must be running in order to provide logging services, which are essential to system administration.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'rsyslog' disable
/sbin/chkconfig --level 0123456 'rsyslog' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Enable service rsyslog
  service:
    name: rsyslog
    enabled: "yes"
    state: "started"
  tags:
    - service_rsyslog_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AU-4(1)
    - NIST-800-53-AU-12

Disable Logwatch on Clients if a Logserver Exists   [ref]rule

Does your site have a central logserver which has been configured to report on logs received from all systems? If so:

 
$ sudo rm /etc/cron.daily/0logwatch 
If no logserver exists, it will be necessary for each system to run Logwatch individually. Using a central logserver provides the security and reliability benefits discussed earlier, and also makes monitoring logs easier and less time-intensive for administrators.

Rationale:

Severity:  unknown

Ensure rsyslog is Installed   [ref]rule

Rsyslog is installed by default. The rsyslog package can be installed with the following command:

 $ sudo yum install rsyslog

Rationale:

The rsyslog package provides the rsyslog daemon, which provides system logging services.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable
# Function to install packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_install aide
#
function package_install {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_install 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if ! rpm -q --quiet "$package"; then
    dnf install -y "$package"
  fi
elif which yum ; then
  if ! rpm -q --quiet "$package"; then
    yum install -y "$package"
  fi
elif which apt-get ; then
  apt-get install -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_install rsyslog
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Ensure rsyslog is installed
  package:
    name: rsyslog
    state: present
  tags:
    - package_rsyslog_installed
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AU-9(2)
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
include install_rsyslog

class install_rsyslog {
  package { 'rsyslog':
    ensure => 'installed',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable

package --add=rsyslog

Network Configuration and Firewalls   [ref]group

Most systems must be connected to a network of some sort, and this brings with it the substantial risk of network attack. This section discusses the security impact of decisions about networking which must be made when configuring a system.

This section also discusses firewalls, network access controls, and other network security frameworks, which allow system-level rules to be written that can limit an attackers' ability to connect to your system. These rules can specify that network traffic should be allowed or denied from certain IP addresses, hosts, and networks. The rules can also specify which of the system's network services are available to particular hosts or networks.

contains 34 rules

IPv6   [ref]group

The system includes support for Internet Protocol version 6. A major and often-mentioned improvement over IPv4 is its enormous increase in the number of available addresses. Another important feature is its support for automatic configuration of many network settings.

contains 8 rules

Configure IPv6 Settings if Necessary   [ref]group

A major feature of IPv6 is the extent to which systems implementing it can automatically configure their networking devices using information from the network. From a security perspective, manually configuring important configuration information is preferable to accepting it from the network in an unauthenticated fashion.

contains 5 rules

Disable Automatic Configuration   [ref]group

Disable the system's acceptance of router advertisements and redirects by adding or correcting the following line in /etc/sysconfig/network (note that this does not disable sending router solicitations):

IPV6_AUTOCONF=no

contains 2 rules

Configure Accepting IPv6 Router Advertisements by Default   [ref]rule

To set the runtime status of the net.ipv6.conf.default.accept_ra kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.default.accept_ra=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv6.conf.default.accept_ra = 0

Rationale:

An illicit router advertisement message could result in a man-in-the-middle attack.

Severity:  unknown

References:  4.4.1.1, 3.3.1, 3.1.20, CM-7

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv6_conf_default_accept_ra_value="0"

#
# Set runtime for net.ipv6.conf.default.accept_ra
#
/sbin/sysctl -q -n -w net.ipv6.conf.default.accept_ra=$sysctl_net_ipv6_conf_default_accept_ra_value

#
# If net.ipv6.conf.default.accept_ra present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv6.conf.default.accept_ra = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv6.conf.default.accept_ra' "$sysctl_net_ipv6_conf_default_accept_ra_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv6_conf_default_accept_ra_value # promote to variable
  set_fact:
    sysctl_net_ipv6_conf_default_accept_ra_value: !!str |-
        0
  tags:
    - always

- name: Ensure sysctl net.ipv6.conf.default.accept_ra is set
  sysctl:
    name: net.ipv6.conf.default.accept_ra
    value: "{{ sysctl_net_ipv6_conf_default_accept_ra_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv6_conf_default_accept_ra
    - unknown_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - NIST-800-171-3.1.20

Configure Accepting IPv6 Redirects By Default   [ref]rule

To set the runtime status of the net.ipv6.conf.default.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.default.accept_redirects=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv6.conf.default.accept_redirects = 0

Rationale:

An illicit ICMP redirect message could result in a man-in-the-middle attack.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv6_conf_default_accept_redirects_value="0"

#
# Set runtime for net.ipv6.conf.default.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv6.conf.default.accept_redirects=$sysctl_net_ipv6_conf_default_accept_redirects_value

#
# If net.ipv6.conf.default.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv6.conf.default.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv6.conf.default.accept_redirects' "$sysctl_net_ipv6_conf_default_accept_redirects_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv6_conf_default_accept_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv6_conf_default_accept_redirects_value: !!str |-
        0
  tags:
    - always

- name: Ensure sysctl net.ipv6.conf.default.accept_redirects is set
  sysctl:
    name: net.ipv6.conf.default.accept_redirects
    value: "{{ sysctl_net_ipv6_conf_default_accept_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv6_conf_default_accept_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - NIST-800-171-3.1.20
    - DISA-STIG-RHEL-06-000099

Manually Assign IPv6 Router Address   [ref]rule

Edit the file /etc/sysconfig/network-scripts/ifcfg-interface, and add or correct the following line (substituting your gateway IP as appropriate):

IPV6_DEFAULTGW=2001:0DB8::0001
Router addresses should be manually set and not accepted via any auto-configuration or router advertisement.

Rationale:

Severity:  unknown

References:  CM-6(b), CCI-000366

Manually Assign Global IPv6 Address   [ref]rule

To manually assign an IP address for an interface, edit the file /etc/sysconfig/network-scripts/ifcfg-interface. Add or correct the following line (substituting the correct IPv6 address):

IPV6ADDR=2001:0DB8::ABCD/64
Manually assigning an IP address is preferable to accepting one from routers or from the network otherwise. The example address here is an IPv6 address reserved for documentation purposes, as defined by RFC3849.

Rationale:

Severity:  unknown

References:  CM-6(b), CCI-000366

Use Privacy Extensions for Address   [ref]rule

To introduce randomness into the automatic generation of IPv6 addresses, add or correct the following line in /etc/sysconfig/network-scripts/ifcfg-interface:

IPV6_PRIVACY=rfc3041
Automatically-generated IPv6 addresses are based on the underlying hardware (e.g. Ethernet) address, and so it becomes possible to track a piece of hardware over its lifetime using its traffic. If it is important for a system's IP address to not trivially reveal its hardware address, this setting should be applied.

Rationale:

Severity:  unknown

References:  CM-6(b), 3.1.20, CCI-000366

Remediation Shell script:   (show)


# enable randomness in ipv6 address generation
for interface in /etc/sysconfig/network-scripts/ifcfg-*
do
    echo "IPV6_PRIVACY=rfc3041" >> $interface
done

Disable Support for IPv6 Unless Needed   [ref]group

Despite configuration that suggests support for IPv6 has been disabled, link-local IPv6 address auto-configuration occurs even when only an IPv4 address is assigned. The only way to effectively prevent execution of the IPv6 networking stack is to instruct the system not to activate the IPv6 kernel module.

contains 3 rules

Disable Interface Usage of IPv6   [ref]rule

To disable interface usage of IPv6, add or correct the following lines in /etc/sysconfig/network:

NETWORKING_IPV6=no
IPV6INIT=no

Rationale:

Severity:  unknown

Disable Support for RPC IPv6   [ref]rule

RPC services for NFSv4 try to load transport modules for udp6 and tcp6 by default, even if IPv6 has been disabled in /etc/modprobe.d. To prevent RPC services such as rpc.mountd from attempting to start IPv6 network listeners, remove or comment out the following two lines in /etc/netconfig:

udp6       tpi_clts      v     inet6    udp     -       -
tcp6       tpi_cots_ord  v     inet6    tcp     -       -

Rationale:

Severity:  unknown

References:  3.1.20, CM-7

Remediation Shell script:   (show)


# Drop 'tcp6' and 'udp6' entries from /etc/netconfig to prevent RPC
# services for NFSv4 from attempting to start IPv6 network listeners
declare -a IPV6_RPC_ENTRIES=("tcp6" "udp6")

for rpc_entry in ${IPV6_RPC_ENTRIES[@]}
do
	sed -i "/^$rpc_entry[[:space:]]\+tpi\_.*inet6.*/d" /etc/netconfig
done

Disable IPv6 Networking Support Automatic Loading   [ref]rule

To prevent the IPv6 kernel module (ipv6) from binding to the IPv6 networking stack, add the following line to /etc/modprobe.d/disabled.conf (or another file in /etc/modprobe.d):

options ipv6 disable=1
This permits the IPv6 module to be loaded (and thus satisfy other modules that depend on it), while disabling support for the IPv6 protocol.

Rationale:

Any unnecessary network stacks - including IPv6 - should be disabled, to reduce the vulnerability to exploitation.

Severity:  medium

References:  CCI-001551, SRG-OS-999999, CM-7

Remediation Shell script:   (show)


# Prevent the IPv6 kernel module (ipv6) from loading the IPv6 networking stack
echo "options ipv6 disable=1" > /etc/modprobe.d/ipv6.conf

# Since according to: https://access.redhat.com/solutions/72733
# "ipv6 disable=1" options doesn't always disable the IPv6 networking stack from
# loading, instruct also sysctl configuration to disable IPv6 according to:
# https://access.redhat.com/solutions/8709#rhel6disable

declare -a IPV6_SETTINGS=("net.ipv6.conf.all.disable_ipv6" "net.ipv6.conf.default.disable_ipv6")

for setting in ${IPV6_SETTINGS[@]}
do
	# Set runtime =1 for setting
	/sbin/sysctl -q -n -w "$setting=1"

	# If setting is present in /etc/sysctl.conf, change value to "1"
	# else, add "$setting = 1" to /etc/sysctl.conf
	if grep -q ^"$setting" /etc/sysctl.conf ; then
		sed -i "s/^$setting.*/$setting = 1/g" /etc/sysctl.conf
	else
		echo "" >> /etc/sysctl.conf
		echo "# Set $setting = 1 per security requirements" >> /etc/sysctl.conf
		echo "$setting = 1" >> /etc/sysctl.conf
	fi
done

IPSec Support   [ref]group

Support for Internet Protocol Security (IPsec) is provided in Red Hat Enterprise Linux 6 with openswan and Libreswan.

contains 1 rule

Install libreswan Package   [ref]rule

The Libreswan package provides an implementation of IPsec and IKE, which permits the creation of secure tunnels over untrusted networks. The libreswan package can be installed with the following command:

$ sudo yum install libreswan

Rationale:

Providing the ability for remote users or systems to initiate a secure VPN connection protects information when it is transmitted over a wide area network.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable
# Function to install packages on RHEL, Fedora, Debian, and possibly other systems.
#
# Example Call(s):
#
#     package_install aide
#
function package_install {

# Load function arguments into local variables
local package="$1"

# Check sanity of the input
if [ $# -ne "1" ]
then
  echo "Usage: package_install 'package_name'"
  echo "Aborting."
  exit 1
fi

if which dnf ; then
  if ! rpm -q --quiet "$package"; then
    dnf install -y "$package"
  fi
elif which yum ; then
  if ! rpm -q --quiet "$package"; then
    yum install -y "$package"
  fi
elif which apt-get ; then
  apt-get install -y "$package"
else
  echo "Failed to detect available packaging system, tried dnf, yum and apt-get!"
  echo "Aborting."
  exit 1
fi

}

package_install libreswan
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Ensure libreswan is installed
  package:
    name: libreswan
    state: present
  tags:
    - package_libreswan_installed
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17
    - NIST-800-53-MA-4
    - NIST-800-53-SC-9
    - PCI-DSS-Req-4.1
    - DISA-STIG-RHEL-06-000321
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
include install_libreswan

class install_libreswan {
  package { 'libreswan':
    ensure => 'installed',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable

package --add=libreswan

Kernel Parameters Which Affect Networking   [ref]group

The sysctl utility is used to set parameters which affect the operation of the Linux kernel. Kernel parameters which affect networking and have security implications are described here.

contains 15 rules

Network Related Kernel Runtime Parameters for Hosts and Routers   [ref]group

Certain kernel parameters should be set for systems which are acting as either hosts or routers to improve the system's ability defend against certain types of IPv4 protocol attacks.

contains 12 rules

Configure Kernel Parameter for Accepting Source-Routed Packets By Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.accept_source_route=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.accept_source_route = 0

Rationale:

Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures.
Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required, such as when IPv4 forwarding is enabled and the system is legitimately functioning as a router.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_accept_source_route_value="0"

#
# Set runtime for net.ipv4.conf.default.accept_source_route
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.accept_source_route=$sysctl_net_ipv4_conf_default_accept_source_route_value

#
# If net.ipv4.conf.default.accept_source_route present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.accept_source_route = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.accept_source_route' "$sysctl_net_ipv4_conf_default_accept_source_route_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_default_accept_source_route_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_default_accept_source_route_value: !!str |-
        0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.default.accept_source_route is set
  sysctl:
    name: net.ipv4.conf.default.accept_source_route
    value: "{{ sysctl_net_ipv4_conf_default_accept_source_route_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_accept_source_route
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - NIST-800-171-3.1.20
    - CJIS-5.10.1.1
    - DISA-STIG-RHEL-06-000089

Configure Kernel Parameter to Ignore Bogus ICMP Error Responses   [ref]rule

To set the runtime status of the net.ipv4.icmp_ignore_bogus_error_responses kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.icmp_ignore_bogus_error_responses=1
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.icmp_ignore_bogus_error_responses = 1

Rationale:

Ignoring bogus ICMP error responses reduces log size, although some activity would not be logged.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value="1"

#
# Set runtime for net.ipv4.icmp_ignore_bogus_error_responses
#
/sbin/sysctl -q -n -w net.ipv4.icmp_ignore_bogus_error_responses=$sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value

#
# If net.ipv4.icmp_ignore_bogus_error_responses present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.icmp_ignore_bogus_error_responses = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.icmp_ignore_bogus_error_responses' "$sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value # promote to variable
  set_fact:
    sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value: !!str |-
        1
  tags:
    - always

- name: Ensure sysctl net.ipv4.icmp_ignore_bogus_error_responses is set
  sysctl:
    name: net.ipv4.icmp_ignore_bogus_error_responses
    value: "{{ sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_icmp_ignore_bogus_error_responses
    - unknown_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-171-3.1.20
    - DISA-STIG-RHEL-06-000093

Configure Kernel Parameter for Accepting ICMP Redirects By Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.accept_redirects=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.accept_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages modify the host's route table and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_accept_redirects_value="0"

#
# Set runtime for net.ipv4.conf.default.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.accept_redirects=$sysctl_net_ipv4_conf_default_accept_redirects_value

#
# If net.ipv4.conf.default.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.accept_redirects' "$sysctl_net_ipv4_conf_default_accept_redirects_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_default_accept_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_default_accept_redirects_value: !!str |-
        0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.default.accept_redirects is set
  sysctl:
    name: net.ipv4.conf.default.accept_redirects
    value: "{{ sysctl_net_ipv4_conf_default_accept_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_accept_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - NIST-800-171-3.1.20
    - CJIS-5.10.1.1
    - DISA-STIG-RHEL-06-000091

Configure Kernel Parameter to Use Reverse Path Filtering by Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.rp_filter kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.rp_filter=1
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.rp_filter = 1

Rationale:

Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_rp_filter_value="1"

#
# Set runtime for net.ipv4.conf.default.rp_filter
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.rp_filter=$sysctl_net_ipv4_conf_default_rp_filter_value

#
# If net.ipv4.conf.default.rp_filter present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.rp_filter = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.rp_filter' "$sysctl_net_ipv4_conf_default_rp_filter_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_default_rp_filter_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_default_rp_filter_value: !!str |-
        1
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.default.rp_filter is set
  sysctl:
    name: net.ipv4.conf.default.rp_filter
    value: "{{ sysctl_net_ipv4_conf_default_rp_filter_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_rp_filter
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - NIST-800-171-3.1.20
    - DISA-STIG-RHEL-06-000097

Configure Kernel Parameter for Accepting Secure Redirects for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.secure_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.secure_redirects=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.secure_redirects = 0

Rationale:

Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_secure_redirects_value="0"

#
# Set runtime for net.ipv4.conf.all.secure_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.secure_redirects=$sysctl_net_ipv4_conf_all_secure_redirects_value

#
# If net.ipv4.conf.all.secure_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.secure_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.secure_redirects' "$sysctl_net_ipv4_conf_all_secure_redirects_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_secure_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_secure_redirects_value: !!str |-
        0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.secure_redirects is set
  sysctl:
    name: net.ipv4.conf.all.secure_redirects
    value: "{{ sysctl_net_ipv4_conf_all_secure_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_secure_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-171-3.1.20
    - DISA-STIG-RHEL-06-000086

Configure Kernel Parameter for Accepting IPv4 Source-Routed Packets for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.accept_source_route=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.accept_source_route = 0

Rationale:

Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures. This requirement applies only to the forwarding of source-routerd traffic, such as when IPv4 forwarding is enabled and the system is functioning as a router.

Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_accept_source_route_value="0"

#
# Set runtime for net.ipv4.conf.all.accept_source_route
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.accept_source_route=$sysctl_net_ipv4_conf_all_accept_source_route_value

#
# If net.ipv4.conf.all.accept_source_route present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.accept_source_route = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.accept_source_route' "$sysctl_net_ipv4_conf_all_accept_source_route_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_accept_source_route_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_accept_source_route_value: !!str |-
        0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.accept_source_route is set
  sysctl:
    name: net.ipv4.conf.all.accept_source_route
    value: "{{ sysctl_net_ipv4_conf_all_accept_source_route_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_accept_source_route
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-171-3.1.20
    - DISA-STIG-RHEL-06-000083

Configure Kernel Parameter to Use TCP Syncookies   [ref]rule

To set the runtime status of the net.ipv4.tcp_syncookies kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.tcp_syncookies=1
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.tcp_syncookies = 1

Rationale:

A TCP SYN flood attack can cause a denial of service by filling a system's TCP connection table with connections in the SYN_RCVD state. Syncookies can be used to track a connection when a subsequent ACK is received, verifying the initiator is attempting a valid connection and is not a flood source. This feature is activated when a flood condition is detected, and enables the system to continue servicing valid connection requests.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_tcp_syncookies_value="1"

#
# Set runtime for net.ipv4.tcp_syncookies
#
/sbin/sysctl -q -n -w net.ipv4.tcp_syncookies=$sysctl_net_ipv4_tcp_syncookies_value

#
# If net.ipv4.tcp_syncookies present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.tcp_syncookies = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.tcp_syncookies' "$sysctl_net_ipv4_tcp_syncookies_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_tcp_syncookies_value # promote to variable
  set_fact:
    sysctl_net_ipv4_tcp_syncookies_value: !!str |-
        1
  tags:
    - always

- name: Ensure sysctl net.ipv4.tcp_syncookies is set
  sysctl:
    name: net.ipv4.tcp_syncookies
    value: "{{ sysctl_net_ipv4_tcp_syncookies_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_tcp_syncookies
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-SC-5(1)(2)
    - NIST-800-53-SC-5(2)
    - NIST-800-53-SC-5(3)
    - NIST-800-171-3.1.20
    - CJIS-5.10.1.1
    - DISA-STIG-RHEL-06-000095

Configure Kernel Parameter for Accepting ICMP Redirects for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.accept_redirects=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.accept_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages modify the host's route table and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_accept_redirects_value="0"

#
# Set runtime for net.ipv4.conf.all.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.accept_redirects=$sysctl_net_ipv4_conf_all_accept_redirects_value

#
# If net.ipv4.conf.all.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.accept_redirects' "$sysctl_net_ipv4_conf_all_accept_redirects_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_accept_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_accept_redirects_value: !!str |-
        0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.accept_redirects is set
  sysctl:
    name: net.ipv4.conf.all.accept_redirects
    value: "{{ sysctl_net_ipv4_conf_all_accept_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_accept_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-6(d)
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-171-3.1.20
    - CJIS-5.10.1.1
    - DISA-STIG-RHEL-06-000084

Configure Kernel Parameter to Log Martian Packets   [ref]rule

To set the runtime status of the net.ipv4.conf.all.log_martians kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.log_martians=1
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.log_martians = 1

Rationale:

The presence of "martian" packets (which have impossible addresses) as well as spoofed packets, source-routed packets, and redirects could be a sign of nefarious network activity. Logging these packets enables this activity to be detected.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_log_martians_value="1"

#
# Set runtime for net.ipv4.conf.all.log_martians
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.log_martians=$sysctl_net_ipv4_conf_all_log_martians_value

#
# If net.ipv4.conf.all.log_martians present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.log_martians = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.log_martians' "$sysctl_net_ipv4_conf_all_log_martians_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_log_martians_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_log_martians_value: !!str |-
        1
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.log_martians is set
  sysctl:
    name: net.ipv4.conf.all.log_martians
    value: "{{ sysctl_net_ipv4_conf_all_log_martians_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_log_martians
    - unknown_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-3(10)
    - NIST-800-53-AC-17(7)
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5(3)
    - NIST-800-171-3.1.20
    - DISA-STIG-RHEL-06-000088

Configure Kernel Parameter to Use Reverse Path Filtering for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.rp_filter kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.rp_filter=1
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.rp_filter = 1

Rationale:

Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_rp_filter_value="1"

#
# Set runtime for net.ipv4.conf.all.rp_filter
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.rp_filter=$sysctl_net_ipv4_conf_all_rp_filter_value

#
# If net.ipv4.conf.all.rp_filter present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.rp_filter = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.rp_filter' "$sysctl_net_ipv4_conf_all_rp_filter_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_all_rp_filter_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_all_rp_filter_value: !!str |-
        1
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.all.rp_filter is set
  sysctl:
    name: net.ipv4.conf.all.rp_filter
    value: "{{ sysctl_net_ipv4_conf_all_rp_filter_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_rp_filter
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - NIST-800-171-3.1.20
    - DISA-STIG-RHEL-06-000096

Configure Kernel Parameter to Ignore ICMP Broadcast Echo Requests   [ref]rule

To set the runtime status of the net.ipv4.icmp_echo_ignore_broadcasts kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.icmp_echo_ignore_broadcasts = 1

Rationale:

Responding to broadcast (ICMP) echoes facilitates network mapping and provides a vector for amplification attacks.
Ignoring ICMP echo requests (pings) sent to broadcast or multicast addresses makes the system slightly more difficult to enumerate on the network.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value="1"

#
# Set runtime for net.ipv4.icmp_echo_ignore_broadcasts
#
/sbin/sysctl -q -n -w net.ipv4.icmp_echo_ignore_broadcasts=$sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value

#
# If net.ipv4.icmp_echo_ignore_broadcasts present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.icmp_echo_ignore_broadcasts = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.icmp_echo_ignore_broadcasts' "$sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value # promote to variable
  set_fact:
    sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value: !!str |-
        1
  tags:
    - always

- name: Ensure sysctl net.ipv4.icmp_echo_ignore_broadcasts is set
  sysctl:
    name: net.ipv4.icmp_echo_ignore_broadcasts
    value: "{{ sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_icmp_echo_ignore_broadcasts
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-171-3.1.20
    - CJIS-5.10.1.1
    - DISA-STIG-RHEL-06-000092

Configure Kernel Parameter for Accepting Secure Redirects By Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.secure_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.secure_redirects=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.secure_redirects = 0

Rationale:

Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_secure_redirects_value="0"

#
# Set runtime for net.ipv4.conf.default.secure_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.secure_redirects=$sysctl_net_ipv4_conf_default_secure_redirects_value

#
# If net.ipv4.conf.default.secure_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.secure_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.secure_redirects' "$sysctl_net_ipv4_conf_default_secure_redirects_value" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: XCCDF Value sysctl_net_ipv4_conf_default_secure_redirects_value # promote to variable
  set_fact:
    sysctl_net_ipv4_conf_default_secure_redirects_value: !!str |-
        0
  tags:
    - always

- name: Ensure sysctl net.ipv4.conf.default.secure_redirects is set
  sysctl:
    name: net.ipv4.conf.default.secure_redirects
    value: "{{ sysctl_net_ipv4_conf_default_secure_redirects_value }}"
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_secure_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - NIST-800-171-3.1.20
    - DISA-STIG-RHEL-06-000090

Network Parameters for Hosts Only   [ref]group

If the system is not going to be used as a router, then setting certain kernel parameters ensure that the host will not perform routing of network traffic.

contains 3 rules

Disable Kernel Parameter for IP Forwarding   [ref]rule

To set the runtime status of the net.ipv4.ip_forward kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.ip_forward=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.ip_forward = 0

Rationale:

Routing protocol daemons are typically used on routers to exchange network topology information with other routers. If this capability is used when not required, system network information may be unnecessarily transmitted across the network.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for net.ipv4.ip_forward
#
/sbin/sysctl -q -n -w net.ipv4.ip_forward=0

#
# If net.ipv4.ip_forward present in /etc/sysctl.conf, change value to "0"
#	else, add "net.ipv4.ip_forward = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.ip_forward' "0" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.ip_forward is set to 0
  sysctl:
    name: net.ipv4.ip_forward
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_ip_forward
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-53-SC-32
    - NIST-800-171-3.1.20
    - DISA-STIG-RHEL-06-000082

Disable Kernel Parameter for Sending ICMP Redirects for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.send_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.send_redirects=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.all.send_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages contain information from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for net.ipv4.conf.all.send_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.send_redirects=0

#
# If net.ipv4.conf.all.send_redirects present in /etc/sysctl.conf, change value to "0"
#	else, add "net.ipv4.conf.all.send_redirects = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.send_redirects' "0" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.all.send_redirects is set to 0
  sysctl:
    name: net.ipv4.conf.all.send_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_send_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5(1)
    - NIST-800-171-3.1.20
    - CJIS-5.10.1.1
    - DISA-STIG-RHEL-06-000081

Disable Kernel Parameter for Sending ICMP Redirects by Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.send_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.send_redirects=0
If this is not the system default value, add the following line to a file in the directory /etc/sysctl.d:
net.ipv4.conf.default.send_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages contain information from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for net.ipv4.conf.default.send_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.send_redirects=0

#
# If net.ipv4.conf.default.send_redirects present in /etc/sysctl.conf, change value to "0"
#	else, add "net.ipv4.conf.default.send_redirects = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.send_redirects' "0" ''
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.default.send_redirects is set to 0
  sysctl:
    name: net.ipv4.conf.default.send_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_send_redirects
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-4
    - NIST-800-53-CM-7
    - NIST-800-53-SC-5
    - NIST-800-53-SC-7
    - NIST-800-171-3.1.20
    - CJIS-5.10.1.1
    - DISA-STIG-RHEL-06-000080

Uncommon Network Protocols   [ref]group

The system includes support for several network protocols which are not commonly used. Although security vulnerabilities in kernel networking code are not frequently discovered, the consequences can be dramatic. Ensuring uncommon network protocols are disabled reduces the system's risk to attacks targeted at its implementation of those protocols.

Warning:  Although these protocols are not commonly used, avoid disruption in your network environment by ensuring they are not needed prior to disabling them.
contains 4 rules

Disable DCCP Support   [ref]rule

The Datagram Congestion Control Protocol (DCCP) is a relatively new transport layer protocol, designed to support streaming media and telephony. To configure the system to prevent the dccp kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install dccp /bin/true

Rationale:

Disabling DCCP protects the system against exploitation of any flaws in its implementation.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if LC_ALL=C grep -q -m 1 "^install dccp" /etc/modprobe.d/dccp.conf ; then
	sed -i 's/^install dccp.*/install dccp /bin/true/g' /etc/modprobe.d/dccp.conf
else
	echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/dccp.conf
	echo "install dccp /bin/true" >> /etc/modprobe.d/dccp.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure kernel module 'dccp' is disabled
  lineinfile:
    create: yes
    dest: "/etc/modprobe.d/dccp.conf"
    regexp: 'dccp'
    line: "install dccp /bin/true"
  tags:
    - kernel_module_dccp_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - NIST-800-171-3.4.6
    - CJIS-5.10.1
    - DISA-STIG-RHEL-06-000124
    - DISA-STIG-020101

Disable RDS Support   [ref]rule

The Reliable Datagram Sockets (RDS) protocol is a transport layer protocol designed to provide reliable high- bandwidth, low-latency communications between nodes in a cluster. To configure the system to prevent the rds kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install rds /bin/true

Rationale:

Disabling RDS protects the system against exploitation of any flaws in its implementation.

Severity:  unknown

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if LC_ALL=C grep -q -m 1 "^install rds" /etc/modprobe.d/rds.conf ; then
	sed -i 's/^install rds.*/install rds /bin/true/g' /etc/modprobe.d/rds.conf
else
	echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/rds.conf
	echo "install rds /bin/true" >> /etc/modprobe.d/rds.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure kernel module 'rds' is disabled
  lineinfile:
    create: yes
    dest: "/etc/modprobe.d/rds.conf"
    regexp: 'rds'
    line: "install rds /bin/true"
  tags:
    - kernel_module_rds_disabled
    - unknown_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000126

Disable SCTP Support   [ref]rule

The Stream Control Transmission Protocol (SCTP) is a transport layer protocol, designed to support the idea of message-oriented communication, with several streams of messages within one connection. To configure the system to prevent the sctp kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install sctp /bin/true

Rationale:

Disabling SCTP protects the system against exploitation of any flaws in its implementation.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if LC_ALL=C grep -q -m 1 "^install sctp" /etc/modprobe.d/sctp.conf ; then
	sed -i 's/^install sctp.*/install sctp /bin/true/g' /etc/modprobe.d/sctp.conf
else
	echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/sctp.conf
	echo "install sctp /bin/true" >> /etc/modprobe.d/sctp.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure kernel module 'sctp' is disabled
  lineinfile:
    create: yes
    dest: "/etc/modprobe.d/sctp.conf"
    regexp: 'sctp'
    line: "install sctp /bin/true"
  tags:
    - kernel_module_sctp_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - NIST-800-171-3.4.6
    - CJIS-5.10.1
    - DISA-STIG-RHEL-06-000125

Disable TIPC Support   [ref]rule

The Transparent Inter-Process Communication (TIPC) protocol is designed to provide communications between nodes in a cluster. To configure the system to prevent the tipc kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install tipc /bin/true

Rationale:

Disabling TIPC protects the system against exploitation of any flaws in its implementation.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if LC_ALL=C grep -q -m 1 "^install tipc" /etc/modprobe.d/tipc.conf ; then
	sed -i 's/^install tipc.*/install tipc /bin/true/g' /etc/modprobe.d/tipc.conf
else
	echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/tipc.conf
	echo "install tipc /bin/true" >> /etc/modprobe.d/tipc.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure kernel module 'tipc' is disabled
  lineinfile:
    create: yes
    dest: "/etc/modprobe.d/tipc.conf"
    regexp: 'tipc'
    line: "install tipc /bin/true"
  tags:
    - kernel_module_tipc_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-CM-7
    - DISA-STIG-RHEL-06-000127

Wireless Networking   [ref]group

Wireless networking, such as 802.11 (WiFi) and Bluetooth, can present a security risk to sensitive or classified systems and networks. Wireless networking hardware is much more likely to be included in laptop or portable systems than in desktops or servers.

Removal of hardware provides the greatest assurance that the wireless capability remains disabled. Acquisition policies often include provisions to prevent the purchase of equipment that will be used in sensitive spaces and includes wireless capabilities. If it is impractical to remove the wireless hardware, and policy permits the device to enter sensitive spaces as long as wireless is disabled, efforts should instead focus on disabling wireless capability via software.

contains 4 rules

Disable Wireless Through Software Configuration   [ref]group

If it is impossible to remove the wireless hardware from the device in question, disable as much of it as possible through software. The following methods can disable software support for wireless networking, but note that these methods do not prevent malicious software or careless users from re-activating the devices.

contains 4 rules

Disable Bluetooth Kernel Modules   [ref]rule

The kernel's module loading system can be configured to prevent loading of the Bluetooth module. Add the following to the appropriate /etc/modprobe.d configuration file to prevent the loading of the Bluetooth module:

install bluetooth /bin/true

Rationale:

If Bluetooth functionality must be disabled, preventing the kernel from loading the kernel module provides an additional safeguard against its activation.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if LC_ALL=C grep -q -m 1 "^install bluetooth" /etc/modprobe.d/bluetooth.conf ; then
	sed -i 's/^install bluetooth.*/install bluetooth /bin/true/g' /etc/modprobe.d/bluetooth.conf
else
	echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/bluetooth.conf
	echo "install bluetooth /bin/true" >> /etc/modprobe.d/bluetooth.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure kernel module 'bluetooth' is disabled
  lineinfile:
    create: yes
    dest: "/etc/modprobe.d/bluetooth.conf"
    regexp: 'bluetooth'
    line: "install bluetooth /bin/true"
  tags:
    - kernel_module_bluetooth_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - medium_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-AC-18(a)
    - NIST-800-53-AC-18(d)
    - NIST-800-53-AC-18(3)
    - NIST-800-53-CM-7
    - NIST-800-171-3.1.16
    - CJIS-5.13.1.3
    - DISA-STIG-RHEL-06-000315

Disable WiFi or Bluetooth in BIOS   [ref]rule

Some machines that include built-in wireless support offer the ability to disable the device through the BIOS. This is hardware-specific; consult your hardware manual or explore the BIOS setup during boot.

Rationale:

Disabling wireless support in the BIOS prevents easy activation of the wireless interface, generally requiring administrators to reboot the system first.

Severity:  unknown

Disable Bluetooth Service   [ref]rule

The bluetooth service can be disabled with the following command:

$ sudo chkconfig bluetooth off
$ sudo service bluetooth stop

Rationale:

Disabling the bluetooth service prevents the system from attempting connections to Bluetooth devices, which entails some security risk. Nevertheless, variation in this risk decision may be expected due to the utility of Bluetooth connectivity and its limited range.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

/sbin/service 'bluetooth' disable
/sbin/chkconfig --level 0123456 'bluetooth' off
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service bluetooth
  service:
    name: bluetooth
    enabled: "no"
    state: "stopped"
  register: service_result
  failed_when: "service_result is failed and ('Could not find the requested service' not in service_result.msg)"
  tags:
    - service_bluetooth_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-17(8)
    - NIST-800-53-AC-18(a)
    - NIST-800-53-AC-18(d)
    - NIST-800-53-AC-18(3)
    - NIST-800-53-CM-7
    - NIST-800-171-3.1.16
    - DISA-STIG-RHEL-06-000331

Deactivate Wireless Network Interfaces   [ref]rule

Deactivating wireless network interfaces should prevent normal usage of the wireless capability.

Configure the system to disable all wireless network interfaces with the following command:

$ sudo nmcli radio wifi off

Rationale:

The use of wireless networking can introduce many different attack vectors into the organization's network. Common attack vectors such as malicious association and ad hoc networks will allow an attacker to spoof a wireless access point (AP), allowing validated systems to connect to the malicious AP and enabling the attacker to monitor and record network traffic. These malicious APs can also serve to create a man-in-the-middle attack or be used to create a denial of service to valid network resources.

Severity:  medium

Ensure System is Not Acting as a Network Sniffer   [ref]rule

The system should not be acting as a network sniffer, which can capture all traffic on the network to which it is connected. Run the following to determine if any interface is running in promiscuous mode:

$ ip link | grep PROMISC

Rationale:

Network interfaces in promiscuous mode allow for the capture of all network traffic visible to the system. If unauthorized individuals can access these applications, it may allow them to collect information such as logon IDs, passwords, and key exchanges between systems.

If the system is being used to perform a network troubleshooting function, the use of these tools must be documented with the Information Systems Security Manager (ISSM) and restricted to only authorized personnel.

Severity:  medium

Disable Zeroconf Networking   [ref]rule

Zeroconf networking allows the system to assign itself an IP address and engage in IP communication without a statically-assigned address or even a DHCP server. Automatic address assignment via Zeroconf (or DHCP) is not recommended. To disable Zeroconf automatic route assignment in the 169.254.0.0 subnet, add or correct the following line in /etc/sysconfig/network:

NOZEROCONF=yes

Rationale:

Zeroconf addresses are in the network 169.254.0.0. The networking scripts add entries to the system's routing table for these addresses. Zeroconf address assignment commonly occurs when the system is configured to use DHCP but fails to receive an address assignment from the DHCP server.

Severity:  unknown

References:  CM-7

Remediation Shell script:   (show)

echo "NOZEROCONF=yes" >> /etc/sysconfig/network

SELinux   [ref]group

SELinux is a feature of the Linux kernel which can be used to guard against misconfigured or compromised programs. SELinux enforces the idea that programs should be limited in what files they can access and what actions they can take.

The default SELinux policy, as configured on Red Hat Enterprise Linux 6, has been sufficiently developed and debugged that it should be usable on almost any Red Hat system with minimal configuration and a small amount of system administrator training. This policy prevents system services - including most of the common network-visible services such as mail servers, FTP servers, and DNS servers - from accessing files which those services have no valid reason to access. This action alone prevents a huge amount of possible damage from network attacks against services, from trojaned software, and so forth.

This guide recommends that SELinux be enabled using the default (targeted) policy on every Red Hat system, unless that system has unusual requirements which make a stronger policy appropriate.

contains 5 rules

Configure SELinux Policy   [ref]rule

The SELinux targeted policy is appropriate for general-purpose desktops and servers, as well as systems in many other roles. To configure the system to use this policy, add or correct the following line in /etc/selinux/config:

SELINUXTYPE=targeted
Other policies, such as mls, provide additional security labeling and greater confinement but are not compatible with many general-purpose use cases.

Rationale:

Setting the SELinux policy to targeted or a more specialized policy ensures the system will confine processes that are likely to be targeted for exploitation, such as network or system services.

Note: During the development or debugging of SELinux modules, it is common to temporarily place non-production systems in permissive mode. In such temporary cases, SELinux policies should be developed, and once work is completed, the system should be reconfigured to targeted.

Severity:  high

Remediation Shell script:   (show)


var_selinux_policy_name="targeted"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
# format:		The printf-like format string that will be given stripped key and value as arguments,
#			so e.g. '%s=%s' will result in key=value subsitution (i.e. without spaces around =)
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local default_format='%s = %s' case_insensitive_mode=yes sed_case_insensitive_option='' grep_case_insensitive_option=''
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  if [ "$case_insensitive_mode" = yes ]; then
    sed_case_insensitive_option="i"
    grep_case_insensitive_option="-i"
  fi
  [ -n "$format" ] || format="$default_format"
  # Check sanity of the input
  [ $# -ge "3" ] || { echo "Usage: replace_or_append <config_file_location> <key_to_search> <new_value> [<CCE number or literal '@CCENUM@' if unknown>] [printf-like format, default is '$default_format']" >&2; exit 1; }

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  sed_command=('sed' '-i')
  if test -L "$config_file"; then
    sed_command+=('--follow-symlinks')
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if [ -n "$cce" ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed 's/[\^=\$,;+]*//g' <<< "$key")

  # shellcheck disable=SC2059
  printf -v formatted_output "$format" "$stripped_key" "$value"

  # If the key exists, change it. Otherwise, add it to the config_file.
  # We search for the key string followed by a word boundary (matched by \>),
  # so if we search for 'setting', 'setting2' won't match.
  if LC_ALL=C grep -q -m 1 $grep_case_insensitive_option -e "${key}\\>" "$config_file"; then
    "${sed_command[@]}" "s/${key}\\>.*/$formatted_output/g$sed_case_insensitive_option" "$config_file"
  else
    # \n is precaution for case where file ends without trailing newline
    printf '\n# Per %s: Set %s in %s\n' "$cce" "$formatted_output" "$config_file" >> "$config_file"
    printf '%s\n' "$formatted_output" >> "$config_file"
  fi
}

replace_or_append '/etc/sysconfig/selinux' '^SELINUXTYPE=' $var_selinux_policy_name '' '%s=%s'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: XCCDF Value var_selinux_policy_name # promote to variable
  set_fact:
    var_selinux_policy_name: !!str |-
        targeted
  tags:
    - always

- name: "Configure SELinux Policy"
  lineinfile:
    path: /etc/sysconfig/selinux
    regexp: '^SELINUXTYPE='
    line: "SELINUXTYPE={{ var_selinux_policy_name }}"
    create: yes
  tags:
    - selinux_policytype
    - high_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - NIST-800-53-AC-3
    - NIST-800-53-AC-3(3)
    - NIST-800-53-AC-3(4)
    - NIST-800-53-AC-4
    - NIST-800-53-AC-6
    - NIST-800-53-AU-9
    - NIST-800-53-SI-6(a)
    - NIST-800-171-3.1.2
    - NIST-800-171-3.7.2
    - DISA-STIG-RHEL-06-000023

Ensure No Daemons are Unconfined by SELinux   [ref]rule

Daemons for which the SELinux policy does not contain rules will inherit the context of the parent process. Because daemons are launched during startup and descend from the init process, they inherit the initrc_t context.

To check for unconfined daemons, run the following command:

$ sudo ps -eZ | egrep "initrc" | egrep -vw "tr|ps|egrep|bash|awk" | tr ':' ' ' | awk '{ print $NF }'
It should produce no output in a well-configured system.

Warning:  Automatic remediation of this control is not available. Remediation can be achieved by amending SELinux policy or stopping the unconfined daemons as outlined above.
Rationale:

Daemons which run with the initrc_t context may cause AVC denials, or allow privileges that the daemon does not require.

Severity:  medium

Ensure No Device Files are Unlabeled by SELinux   [ref]rule

Device files, which are used for communication with important system resources, should be labeled with proper SELinux types. If any device files do not carry the SELinux type device_t, report the bug so that policy can be corrected. Supply information about what the device is and what programs use it.

To check for unlabeled device files, run the following command:

$ sudo find /dev -context *:device_t:* \( -type c -o -type b \) -printf "%p %Z\n"
It should produce no output in a well-configured system.