Guide to the Secure Configuration of Red Hat Enterprise Linux 7

with profile C2S for Red Hat Enterprise Linux 7
This profile demonstrates compliance against the U.S. Government Commercial Cloud Services (C2S) baseline. This baseline was inspired by the Center for Internet Security (CIS) Red Hat Enterprise Linux 7 Benchmark, v1.1.0 - 04-02-2015. For the SCAP Security Guide project to remain in compliance with CIS' terms and conditions, specifically Restrictions(8), note there is no representation or claim that the C2S profile will ensure a system is in compliance or consistency with the CIS baseline.

This guide presents a catalog of security-relevant configuration settings for Red Hat Enterprise Linux 7. It is a rendering of content structured in the eXtensible Configuration Checklist Description Format (XCCDF) in order to support security automation. The SCAP content is is available in the scap-security-guide package which is developed at https://www.open-scap.org/security-policies/scap-security-guide.

Providing system administrators with such guidance informs them how to securely configure systems under their control in a variety of network roles. Policy makers and baseline creators can use this catalog of settings, with its associated references to higher-level security control catalogs, in order to assist them in security baseline creation. This guide is a catalog, not a checklist, and satisfaction of every item is not likely to be possible or sensible in many operational scenarios. However, the XCCDF format enables granular selection and adjustment of settings, and their association with OVAL and OCIL content provides an automated checking capability. Transformations of this document, and its associated automated checking content, are capable of providing baselines that meet a diverse set of policy objectives. Some example XCCDF Profiles, which are selections of items that form checklists and can be used as baselines, are available with this guide. They can be processed, in an automated fashion, with tools that support the Security Content Automation Protocol (SCAP). The DISA STIG for Red Hat Enterprise Linux 7, which provides required settings for US Department of Defense systems, is one example of a baseline created from this guidance.
Do not attempt to implement any of the settings in this guide without first testing them in a non-operational environment. The creators of this guidance assume no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any other characteristic.
Profile TitleC2S for Red Hat Enterprise Linux 7
Profile IDxccdf_org.ssgproject.content_profile_C2S

Revision History

Current version: 0.1.34

  • draft (as of 2017-06-29)

Platforms

  • cpe:/o:redhat:enterprise_linux:7
  • cpe:/o:redhat:enterprise_linux:7::client
  • cpe:/o:redhat:enterprise_linux:7::computenode

Table of Contents

  1. System Settings
    1. Installing and Maintaining Software
    2. File Permissions and Masks
    3. SELinux
    4. Account and Access Control
    5. Network Configuration and Firewalls
    6. Configure Syslog
    7. System Accounting with auditd
  2. Services
    1. Obsolete Services
    2. Base Services
    3. Cron and At Daemons
    4. SSH Server
    5. X Window System
    6. Avahi Server
    7. Print Support
    8. DHCP
    9. Network Time Protocol
    10. Mail Server Software
    11. LDAP
    12. NFS and RPC
    13. DNS Server
    14. FTP Server
    15. Web Server
    16. IMAP and POP3 Server
    17. Samba(SMB) Microsoft Windows File Sharing Server
    18. Proxy Server
    19. SNMP Server

Checklist

contains 168 rules

System Settings   [ref]group

Contains rules that check correct system settings.

contains 123 rules

Installing and Maintaining Software   [ref]group

The following sections contain information on security-relevant choices during the initial operating system installation process and the setup of software updates.

contains 12 rules

Disk Partitioning   [ref]group

To ensure separation and protection of data, there are top-level system directories which should be placed on their own physical partition or logical volume. The installer's default partitioning scheme creates separate logical volumes for /, /boot, and swap.

  • If starting with any of the default layouts, check the box to "Review and modify partitioning." This allows for the easy creation of additional logical volumes inside the volume group already created, though it may require making /'s logical volume smaller to create space. In general, using logical volumes is preferable to using partitions because they can be more easily adjusted later.
  • If creating a custom layout, create the partitions mentioned in the previous paragraph (which the installer will require anyway), as well as separate ones described in the following sections.
If a system has already been installed, and the default partitioning scheme was used, it is possible but nontrivial to modify it to create separate logical volumes for the directories listed above. The Logical Volume Manager (LVM) makes this possible. See the LVM HOWTO at http://tldp.org/HOWTO/LVM-HOWTO/ for more detailed information on LVM.

contains 5 rules

Ensure /tmp Located On Separate Partition   [ref]rule

The /tmp directory is a world-writable directory used for temporary file storage. Ensure it has its own partition or logical volume at installation time, or migrate it using LVM.

Rationale:

The /tmp partition is used as temporary storage by many programs. Placing /tmp in its own partition enables the setting of more restrictive mount options, which can help protect programs which use it.

Severity:  low

Identifiers:  CCE-27173-4

References:  RHEL-07-021340, SC-32(1), 366, SRG-OS-000480-GPOS-00227, 1.1.1

Ensure /var Located On Separate Partition   [ref]rule

The /var directory is used by daemons and other system services to store frequently-changing data. Ensure that /var has its own partition or logical volume at installation time, or migrate it using LVM.

Rationale:

Ensuring that /var is mounted on its own partition enables the setting of more restrictive mount options. This helps protect system services such as daemons or other programs which use it. It is not uncommon for the /var directory to contain world-writable directories installed by other software packages.

Severity:  low

Identifiers:  CCE-26404-4

References:  RHEL-07-021320, SC-32(1), 1.1.5, 366, SRG-OS-000480-GPOS-00227

Ensure /var/log Located On Separate Partition   [ref]rule

System logs are stored in the /var/log directory. Ensure that it has its own partition or logical volume at installation time, or migrate it using LVM.

Rationale:

Placing /var/log in its own partition enables better separation between log files and other files in /var/.

Severity:  low

Identifiers:  CCE-26967-0

References:  AU-9, SC-32, http://iase.disa.mil/stigs/cci/Pages/index.aspx, 1.1.7

Ensure /var/log/audit Located On Separate Partition   [ref]rule

Audit logs are stored in the /var/log/audit directory. Ensure that it has its own partition or logical volume at installation time, or migrate it later using LVM. Make absolutely certain that it is large enough to store all audit logs that will be created by the auditing daemon.

Rationale:

Placing /var/log/audit in its own partition enables better separation between audit files and other files, and helps ensure that auditing cannot be halted due to the partition running out of space.

Severity:  low

Identifiers:  CCE-26971-2

References:  RHEL-07-021330, AU-4, AU-9, SC-32(1), 366, 1.1.8, SRG-OS-000480-GPOS-00227

Ensure /home Located On Separate Partition   [ref]rule

If user home directories will be stored locally, create a separate partition for /home at installation time (or migrate it later using LVM). If /home will be mounted from another system such as an NFS server, then creating a separate partition is not necessary at installation time, and the mountpoint can instead be configured later.

Rationale:

Ensuring that /home is mounted on its own partition enables the setting of more restrictive mount options, and also helps ensure that users cannot trivially fill partitions used for log or audit data storage.

Severity:  low

Identifiers:  CCE-80144-9

References:  RHEL-07-021310, SC-32(1), 366, 1208, 1.1.9, SRG-OS-000480-GPOS-00227

Updating Software   [ref]group

The yum command line tool is used to install and update software packages. The system also provides a graphical software update tool in the System menu, in the Administration submenu, called Software Update.

Red Hat Enterprise Linux systems contain an installed software catalog called the RPM database, which records metadata of installed packages. Consistently using yum or the graphical Software Update for all software installation allows for insight into the current inventory of installed software on the system.

contains 3 rules

Ensure Red Hat GPG Key Installed   [ref]rule

To ensure the system can cryptographically verify base software packages come from Red Hat (and to connect to the Red Hat Network to receive them), the Red Hat GPG key must properly be installed. To install the Red Hat GPG key, run:

$ sudo rhn_register
If the system is not connected to the Internet or an RHN Satellite, then install the Red Hat GPG key from trusted media such as the Red Hat installation CD-ROM or DVD. Assuming the disc is mounted in /media/cdrom, use the following command as the root user to import it into the keyring:
$ sudo rpm --import /media/cdrom/RPM-GPG-KEY

Rationale:

Changes to software components can have significant effects on the overall security of the operating system. This requirement ensures the software has not been tampered with and that it has been provided by a trusted vendor. The Red Hat GPG key is necessary to cryptographically verify packages are from Red Hat.

Severity:  high

Identifiers:  CCE-26957-1

References:  CM-5(3), SI-7, MA-1(b), 1749, 366, Req-6.2, 1.2.2, 5.10.4.1, 3.4.8

Remediation Shell script:   (show)

# The two fingerprints below are retrieved from https://access.redhat.com/security/team/key
readonly REDHAT_RELEASE_2_FINGERPRINT="567E 347A D004 4ADE 55BA 8A5F 199E 2F91 FD43 1D51"
readonly REDHAT_AUXILIARY_FINGERPRINT="43A6 E49C 4A38 F4BE 9ABF 2A53 4568 9C88 2FA6 58E0"
# Location of the key we would like to import (once it's integrity verified)
readonly REDHAT_RELEASE_KEY="/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release"

RPM_GPG_DIR_PERMS=$(stat -c %a "$(dirname "$REDHAT_RELEASE_KEY")")

# Verify /etc/pki/rpm-gpg directory permissions are safe
if [ "${RPM_GPG_DIR_PERMS}" -le "755" ]
then
  # If they are safe, try to obtain fingerprints from the key file
  # (to ensure there won't be e.g. CRC error).
  IFS=$'\n' GPG_OUT=($(gpg --with-fingerprint "${REDHAT_RELEASE_KEY}" | grep 'Key fingerprint ='))
  GPG_RESULT=$?
  # No CRC error, safe to proceed
  if [ "${GPG_RESULT}" -eq "0" ]
  then
    tr -s ' ' <<< "${GPG_OUT}" | grep -vE "${REDHAT_RELEASE_2_FINGERPRINT}|${REDHAT_AUXILIARY_FINGERPRINT}" || {
      # If file doesn't contains any keys with unknown fingerprint, import it
      rpm --import "${REDHAT_RELEASE_KEY}"
    }
  fi
fi
Remediation Ansible snippet:   (show)

Complexity:medium
Disruption:medium
Strategy:restrict
- name: "Read permission of GPG key directory"
  stat:
    path: /etc/pki/rpm-gpg/
  register: gpg_key_directory_permission
  check_mode: no
  tags:
    - ensure_redhat_gpgkey_installed
    - high
    - CCE-26957-1

# It should fail if it doesn't find any fingerprints in file - maybe file was not parsed well.

- name: "Read signatures in GPG key"
  shell: "gpg --with-fingerprint '/etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release' | grep 'Key fingerprint =' | tr -s ' ' | sed 's;.*= ;;g'"
  changed_when: False
  register: gpg_fingerprints
  check_mode: no
  tags:
    - ensure_redhat_gpgkey_installed
    - high
    - CCE-26957-1

- name: "Set Fact: Valid fingerprints"
  set_fact:
     gpg_valid_fingerprints: ("567E 347A D004 4ADE 55BA 8A5F 199E 2F91 FD43 1D51" "43A6 E49C 4A38 F4BE 9ABF 2A53 4568 9C88 2FA6 58E0")
  tags:
    - ensure_redhat_gpgkey_installed
    - high
    - CCE-26957-1

- name: "Import RedHat GPG key"
  rpm_key:
    state: present
    key: /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release
  when:
    (gpg_key_directory_permission.stat.mode <= '0755')
    and (( gpg_fingerprints.stdout_lines | difference(gpg_valid_fingerprints)) | length == 0)
    and (gpg_fingerprints.stdout_lines | length > 0)
    and (ansible_distribution == "RedHat")
  tags:
    - ensure_redhat_gpgkey_installed
    - high
    - CCE-26957-1

Ensure gpgcheck Enabled In Main Yum Configuration   [ref]rule

The gpgcheck option controls whether RPM packages' signatures are always checked prior to installation. To configure yum to check package signatures before installing them, ensure the following line appears in /etc/yum.conf in the [main] section:

gpgcheck=1

Rationale:

Changes to any software components can have significant effects on the overall security of the operating system. This requirement ensures the software has not been tampered with and that it has been provided by a trusted vendor.
Accordingly, patches, service packs, device drivers, or operating system components must be signed with a certificate recognized and approved by the organization.
Verifying the authenticity of the software prior to installation validates the integrity of the patch or upgrade received from a vendor. This ensures the software has not been tampered with and that it has been provided by a trusted vendor. Self-signed certificates are disallowed by this requirement. Certificates used to verify the software must be from an approved Certificate Authority (CA).

Severity:  high

Identifiers:  CCE-26989-4

References:  RHEL-07-020050, CM-5(3), SI-7, MA-1(b), 1749, SRG-OS-000366-GPOS-00153, Req-6.2, 1.2.3, 5.10.4.1, 3.4.8

Remediation Shell script:   (show)

# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/yum.conf' '^gpgcheck' '1' 'CCE-26989-4'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
- name: "Check existence of yum on Fedora"
  stat:
    path: /etc/yum.conf
  register: yum_config_file
  check_mode: no
  when: ansible_distribution == "Fedora"

# Old versions of Fedora use yum

- name: "Ensure GPG check is globally activated (yum)"
  ini_file:
    dest: "{{item}}"
    section: main
    option: gpgcheck
    value: 1
    create: False
  with_items: "/etc/yum.conf"
  when: ansible_distribution == "RedHat" or yum_config_file.stat.exists
  tags:
    - ensure_gpgcheck_globally_activated
    - high
    - CCE-26989-4

- name: "Ensure GPG check is globally activated (dnf)"
  ini_file:
    dest: "{{item}}"
    section: main
    option: gpgcheck
    value: 1
    create: False
  with_items: "/etc/dnf/dnf.conf"
  when: ansible_distribution == "Fedora"
  tags:
    - ensure_gpgcheck_globally_activated
    - high
    - CCE-26989-4

Ensure Software Patches Installed   [ref]rule

If the system is joined to the Red Hat Network, a Red Hat Satellite Server, or a yum server, run the following command to install updates:

$ sudo yum update
If the system is not configured to use one of these sources, updates (in the form of RPM packages) can be manually downloaded from the Red Hat Network and installed using rpm.

NOTE: U.S. Defense systems are required to be patched within 30 days or sooner as local policy dictates.

Rationale:

Installing software updates is a fundamental mitigation against the exploitation of publicly-known vulnerabilities. If the most recent security patches and updates are not installed, unauthorized users may take advantage of weaknesses in the unpatched software. The lack of prompt attention to patching could result in a system compromise.

Severity:  high

Identifiers:  CCE-26895-3

References:  RHEL-07-020260, SI-2, SI-2(c), MA-1(b), 366, Req-6.2, 1.7, SRG-OS-000480-GPOS-00227, 5.10.4.1

Remediation Shell script:   (show)

yum -y update

System and Software Integrity   [ref]group

System and software integrity can be gained by installing antivirus, increasing system encryption strength with FIPS, verifying installed software, enabling SELinux, installing an Intrusion Prevention System, etc. However, installing or enabling integrity checking tools cannot prevent intrusions, but they can detect that an intrusion may have occurred. Requirements for integrity checking may be highly dependent on the environment in which the system will be used. Snapshot-based approaches such as AIDE may induce considerable overhead in the presence of frequent software updates.

contains 4 rules

Software Integrity Checking   [ref]group

Both the AIDE (Advanced Intrusion Detection Environment) software and the RPM package management system provide mechanisms for verifying the integrity of installed software. AIDE uses snapshots of file metadata (such as hashes) and compares these to current system files in order to detect changes.

The RPM package management system can conduct integrity checks by comparing information in its metadata database with files installed on the system.

contains 4 rules

Verify Integrity with AIDE   [ref]group

AIDE conducts integrity checks by comparing information about files with previously-gathered information. Ideally, the AIDE database is created immediately after initial system configuration, and then again after any software update. AIDE is highly configurable, with further configuration information located in /usr/share/doc/aide-VERSION.

contains 2 rules

Install AIDE   [ref]rule

Install the AIDE package with the command:

$ sudo yum install aide

Rationale:

The AIDE package must be installed if it is to be available for integrity checking.

Severity:  medium

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable
# Function to install or uninstall packages on RHEL and Fedora systems.
#
# Example Call(s):
#
#     package_command install aide
#     package_command remove telnet-server
#
function package_command {

# Load function arguments into local variables
local package_operation=$1
local package=$2

# Check sanity of the input
if [ $# -ne "2" ]
then
  echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
  echo "Aborting."
  exit 1
fi

# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
  install_util="/usr/bin/dnf"
else
  install_util="/usr/bin/yum"
fi

if [ "$package_operation" != 'remove' ] ; then
  # If the rpm is not installed, install the rpm
  if ! /bin/rpm -q --quiet $package; then
    $install_util -y $package_operation $package
  fi
else
  # If the rpm is installed, uninstall the rpm
  if /bin/rpm -q --quiet $package; then
    $install_util -y $package_operation $package
  fi
fi

}

package_command install aide
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: "Ensure aide is installed"
  package:
    name="{{item}}"
    state=present
  with_items:
    - aide
  tags:
    - package_aide_installed
    - medium
    - CCE-27096-7

Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
include install_aide

class install_aide {
  package { 'aide':
    ensure => 'installed',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable

package --add=aide

Configure Periodic Execution of AIDE   [ref]rule

At a minimum, AIDE should be configured to run a weekly scan. At most, AIDE should be run daily. To implement a daily execution of AIDE at 4:05am using cron, add the following line to /etc/crontab:

05 4 * * * root /usr/sbin/aide --check
To implement a weekly execution of AIDE at 4:05am using cron, add the following line to /etc/crontab:
05 4 * * 0 root /usr/sbin/aide --check
AIDE can be executed periodically through other means; this is merely one example.

Rationale:

By default, AIDE does not install itself for periodic execution. Periodically running AIDE is necessary to reveal unexpected changes in installed files.

Unauthorized changes to the baseline configuration could make the system vulnerable to various attacks or allow unauthorized access to the operating system. Changes to operating system configurations can have unintended side effects, some of which may be relevant to security.

Detecting such changes and providing an automated response can help avoid unintended, negative consequences that could ultimately affect the security state of the operating system. The operating system's Information Management Officer (IMO)/Information System Security Officer (ISSO) and System Administrators (SAs) must be notified via email and/or monitoring system trap when there is an unauthorized modification of a configuration item.

Severity:  medium

Remediation Shell script:   (show)

if ! grep -q "/usr/sbin/aide --check" /etc/crontab ; then
    echo "05 4 * * * root /usr/sbin/aide --check" >> /etc/crontab
fi

Verify Integrity with RPM   [ref]group

The RPM package management system includes the ability to verify the integrity of installed packages by comparing the installed files with information about the files taken from the package metadata stored in the RPM database. Although an attacker could corrupt the RPM database (analogous to attacking the AIDE database as described above), this check can still reveal modification of important files. To list which files on the system differ from what is expected by the RPM database:

$ rpm -qVa
See the man page for rpm to see a complete explanation of each column.

contains 2 rules

Verify and Correct File Permissions with RPM   [ref]rule

Discretionary access control is weakened if a user or group has access permissions to system files and directories greater than the default. The RPM package management system can check file access permissions of installed software packages, including many that are important to system security. Verify that the file permissions, ownership, and gruop membership of system files and commands match vendor values. Check the file permissions, ownership, and group membership with the following command:

$ sudo rpm -Va | grep '^.M'
Output indicates files that do not match vendor defaults. After locating a file with incorrect permissions, run the following command to determine which package owns it:
$ rpm -qf FILENAME

Next, run the following command to reset its permissions to the correct values:
$ sudo rpm --setperms PACKAGENAME

Warning:  Note: Due to a bug in the gdm package, the RPM verify command may continue to fail even after file permissions have been correctly set on /var/log/gdm. This is being tracked in Red Hat Bugzilla #1275532.
Rationale:

Permissions on system binaries and configuration files that are too generous could allow an unauthorized user to gain privileges that they should not have. The permissions set by the vendor should be maintained. Any deviations from this baseline should be investigated.

Severity:  high

Remediation Shell script:   (show)

Complexity:high
Disruption:medium
Strategy:restrict

# Declare array to hold list of RPM packages we need to correct permissions for
declare -a SETPERMS_RPM_LIST

# Create a list of files on the system having permissions different from what
# is expected by the RPM database
FILES_WITH_INCORRECT_PERMS=($(rpm -Va --nofiledigest | grep '^.M'))

# For each file path from that list:
# * Determine the RPM package the file path is shipped by,
# * Include it into SETPERMS_RPM_LIST array

for FILE_PATH in "${FILES_WITH_INCORRECT_PERMS[@]}"
do
	RPM_PACKAGE=$(rpm -qf "$FILE_PATH")
	SETPERMS_RPM_LIST=("${SETPERMS_RPM_LIST[@]}" "$RPM_PACKAGE")
done

# Remove duplicate mention of same RPM in $SETPERMS_RPM_LIST (if any)
SETPERMS_RPM_LIST=( $(echo "${SETPERMS_RPM_LIST[@]}" | sort -n | uniq) )

# For each of the RPM packages left in the list -- reset its permissions to the
# correct values
for RPM_PACKAGE in "${SETPERMS_RPM_LIST[@]}"
do
	rpm --setperms "${RPM_PACKAGE}"
done
Remediation Ansible snippet:   (show)

Complexity:high
Disruption:medium
Strategy:restrict
- name: "Read list of files with incorrect permissions"
  shell: "rpm -Va | grep '^.M' | sed -r 's;^.*\\s+(.+);\\1;g'"
  register: files_with_incorrect_permissions
  failed_when: False
  changed_when: False
  check_mode: no
  tags:
    - rpm_verify_permissions
    - high
    - CCE-27209-6

- name: "Correct file permissions with RPM"
  shell: "rpm --setperms $(rpm -qf '{{item}}')"
  with_items: "{{ files_with_incorrect_permissions.stdout_lines }}"
  when: files_with_incorrect_permissions.stdout_lines | length > 0
  tags:
    - rpm_verify_permissions
    - high
    - CCE-27209-6

Verify File Hashes with RPM   [ref]rule

Without cryptographic integrity protections, system executables and files can be altered by unauthorized users without detection. The RPM package management system can check the hashes of installed software packages, including many that are important to system security. To verify that the cryptographic hash of system files and commands match vendor values, run the following command to list which files on the system have hashes that differ from what is expected by the RPM database:

$ rpm -Va | grep '^..5'
A "c" in the second column indicates that a file is a configuration file, which may appropriately be expected to change. If the file was not expected to change, investigate the cause of the change using audit logs or other means. The package can then be reinstalled to restore the file. Run the following command to determine which package owns the file:
$ rpm -qf FILENAME
The package can be reinstalled from a yum repository using the command:
$ sudo yum reinstall PACKAGENAME
Alternatively, the package can be reinstalled from trusted media using the command:
$ sudo rpm -Uvh PACKAGENAME

Rationale:

The hashes of important files like system executables should match the information given by the RPM database. Executables with erroneous hashes could be a sign of nefarious activity on the system.

Severity:  high

Remediation Ansible snippet:   (show)

Complexity:high
Disruption:medium
- name: "Set fact: Package manager reinstall command (dnf)"
  set_fact:
    package_manager_reinstall_cmd: dnf reinstall -y
  when: ansible_distribution == "Fedora"
  tags:
    - rpm_verify_hashes
    - high
    - CCE-27157-7

- name: "Set fact: Package manager reinstall command (yum)"
  set_fact:
    package_manager_reinstall_cmd: yum reinstall -y
  when: ansible_distribution == "RedHat"
  tags:
    - rpm_verify_hashes
    - high
    - CCE-27157-7

- name: "Read files with incorrect hash"
  shell: "rpm -Va | grep -E '^..5.* /(bin|sbin|lib|lib64|usr)/' | sed -r 's;^.*\\s+(.+);\\1;g'"
  register: files_with_incorrect_hash
  changed_when: False
  when: package_manager_reinstall_cmd is defined
  check_mode: no
  tags:
    - rpm_verify_hashes
    - high
    - CCE-27157-7

- name: "Reinstall packages of files with incorrect hash"
  shell: "{{package_manager_reinstall_cmd}} $(rpm -qf '{{item}}')"
  with_items: "{{ files_with_incorrect_hash.stdout_lines }}"
  when: package_manager_reinstall_cmd is defined and (files_with_incorrect_hash.stdout_lines | length > 0)
  tags:
    - rpm_verify_hashes
    - high
    - CCE-27157-7

File Permissions and Masks   [ref]group

Traditional Unix security relies heavily on file and directory permissions to prevent unauthorized users from reading or modifying files to which they should not have access.

Several of the commands in this section search filesystems for files or directories with certain characteristics, and are intended to be run on every local partition on a given system. When the variable PART appears in one of the commands below, it means that the command is intended to be run repeatedly, with the name of each local partition substituted for PART in turn.

The following command prints a list of all xfs partitions on the local system, which is the default filesystem for Red Hat Enterprise Linux 7 installations:

$ mount -t xfs | awk '{print $3}'
For any systems that use a different local filesystem type, modify this command as appropriate.

contains 22 rules

Restrict Partition Mount Options   [ref]group

System partitions can be mounted with certain options that limit what files on those partitions can do. These options are set in the /etc/fstab configuration file, and can be used to make certain types of malicious behavior more difficult.

contains 11 rules

Add nodev Option to Non-Root Local Partitions   [ref]rule

The nodev mount option prevents files from being interpreted as character or block devices. Legitimate character and block devices should exist only in the /dev directory on the root partition or within chroot jails built for system services. Add the nodev option to the fourth column of /etc/fstab for the line which controls mounting of any non-root local partitions.

Rationale:

The nodev mount option prevents files from being interpreted as character or block devices. The only legitimate location for device files is the /dev directory located on the root partition. The only exception to this is chroot jails, for which it is not advised to set nodev on these filesystems.

Severity:  low

Identifiers:  CCE-80145-6

References:  CM-7, 1.1.11

Add nodev Option to Removable Media Partitions   [ref]rule

The nodev mount option prevents files from being interpreted as character or block devices. Legitimate character and block devices should exist only in the /dev directory on the root partition or within chroot jails built for system services. Add the nodev option to the fourth column of /etc/fstab for the line which controls mounting of any removable media partitions.

Rationale:

The only legitimate location for device files is the /dev directory located on the root partition. An exception to this is chroot jails, and it is not advised to set nodev on partitions which contain their root filesystems.

Severity:  low

Identifiers:  CCE-80146-4

References:  AC-19(a), AC-19(d), AC-19(e), CM-7, MP-2

Remediation Shell script:   (show)


var_removable_partition="(N/A)"

NEW_OPT="nodev"

if [ $(grep "$var_removable_partition" /etc/fstab | grep -c "$NEW_OPT" ) -eq 0 ]; then
  MNT_OPTS=$(grep "$var_removable_partition" /etc/fstab | awk '{print $4}')
  sed -i "s|\($var_removable_partition.*${MNT_OPTS}\)|\1,${NEW_OPT}|" /etc/fstab
fi

Add noexec Option to Removable Media Partitions   [ref]rule

The noexec mount option prevents the direct execution of binaries on the mounted filesystem. Preventing the direct execution of binaries from removable media (such as a USB key) provides a defense against malicious software that may be present on such untrusted media. Add the noexec option to the fourth column of /etc/fstab for the line which controls mounting of any removable media partitions.

Rationale:

Allowing users to execute binaries from removable media such as USB keys exposes the system to potential compromise.

Severity:  low

Identifiers:  CCE-80147-2

References:  AC-19(a), AC-19(d), AC-19(e), CM-7, MP-2, 87, 1.1.12

Remediation Shell script:   (show)


var_removable_partition="(N/A)"

NEW_OPT="noexec"

if [ $(grep "$var_removable_partition" /etc/fstab | grep -c "$NEW_OPT" ) -eq 0 ]; then
  MNT_OPTS=$(grep "$var_removable_partition" /etc/fstab | awk '{print $4}')
  sed -i "s|\($var_removable_partition.*${MNT_OPTS}\)|\1,${NEW_OPT}|" /etc/fstab
fi

Add nosuid Option to Removable Media Partitions   [ref]rule

The nosuid mount option prevents set-user-identifier (SUID) and set-group-identifier (SGID) permissions from taking effect. These permissions allow users to execute binaries with the same permissions as the owner and group of the file respectively. Users should not be allowed to introduce SUID and SGID files into the system via partitions mounted from removeable media. Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of any removable media partitions.

Rationale:

The presence of SUID and SGID executables should be tightly controlled. Allowing users to introduce SUID or SGID binaries from partitions mounted off of removable media would allow them to introduce their own highly-privileged programs.

Severity:  low

Identifiers:  CCE-80148-0

References:  RHEL-07-021010, AC-6, AC-19(a), AC-19(d), AC-19(e), CM-7, MP-2, 1.1.13, 366, SRG-OS-000480-GPOS-00227

Remediation Shell script:   (show)


var_removable_partition="(N/A)"

NEW_OPT="nosuid"

if [ $(grep "$var_removable_partition" /etc/fstab | grep -c "$NEW_OPT" ) -eq 0 ]; then
  MNT_OPTS=$(grep "$var_removable_partition" /etc/fstab | awk '{print $4}')
  sed -i "s|\($var_removable_partition.*${MNT_OPTS}\)|\1,${NEW_OPT}|" /etc/fstab
fi

Add nodev Option to /tmp   [ref]rule

The nodev mount option can be used to prevent device files from being created in /tmp. Legitimate character and block devices should not exist within temporary directories like /tmp. Add the nodev option to the fourth column of /etc/fstab for the line which controls mounting of /tmp.

Rationale:

The only legitimate location for device files is the /dev directory located on the root partition. The only exception to this is chroot jails.

Severity:  low

Identifiers:  CCE-80149-8

References:  CM-7, MP-2, 1.1.2

Remediation Shell script:   (show)

NEW_OPT=nodev

if [ $(grep " \/tmp " /etc/fstab | grep -c "$NEW_OPT" ) -eq 0 ]; then
        MNT_OPTS=$(grep " \/tmp " /etc/fstab | awk '{print $4}')
        sed -i "s/\( \/tmp.*${MNT_OPTS}\)/\1,${NEW_OPT}/" /etc/fstab
        
        if [ $MNT_OPTS = "defaults" ]
        then
                sed -i "s/defaults,//" /etc/fstab
        fi
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:high
Strategy:configure
- name: "get back device associated to mountpoint"
  shell: mount | grep ' /tmp ' |cut -d ' ' -f 1
  register: device_name
  check_mode: no
  tags:
    - mount_option_tmp_nodev
    - low
    - CCE-80149-8

- name: "get back device previous mount option"
  shell: mount | grep ' /tmp ' | sed -re 's:.*\((.*)\):\1:'
  register: device_cur_mountoption
  check_mode: no
  tags:
    - mount_option_tmp_nodev
    - low
    - CCE-80149-8

- name: "get back device fstype"
  shell: mount | grep ' /tmp ' | cut -d ' ' -f 5
  register: device_fstype
  check_mode: no
  tags:
    - mount_option_tmp_nodev
    - low
    - CCE-80149-8

- name: "Ensure permission nodevS are set on /tmp"
  mount:
    path: "/tmp"
    src: "{{device_name.stdout}}"
    opts: "{{device_cur_mountoption.stdout}},nodev"
    state: "mounted"
    fstype: "{{device_fstype.stdout}}"
  tags:
    - mount_option_tmp_nodev
    - low
    - CCE-80149-8

Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:high
Strategy:enable

part /tmp --mountoptions="nodev"

Add noexec Option to /tmp   [ref]rule

The noexec mount option can be used to prevent binaries from being executed out of /tmp. Add the noexec option to the fourth column of /etc/fstab for the line which controls mounting of /tmp.

Rationale:

Allowing users to execute binaries from world-writable directories such as /tmp should never be necessary in normal operation and can expose the system to potential compromise.

Severity:  low

Identifiers:  CCE-80150-6

References:  CM-7, MP-2, 1.1.4

Remediation Shell script:   (show)

NEW_OPT=noexec

if [ $(grep " \/tmp " /etc/fstab | grep -c "$NEW_OPT" ) -eq 0 ]; then
        MNT_OPTS=$(grep " \/tmp " /etc/fstab | awk '{print $4}')
        sed -i "s/\( \/tmp.*${MNT_OPTS}\)/\1,${NEW_OPT}/" /etc/fstab
        
        if [ $MNT_OPTS = "defaults" ]
        then
                sed -i "s/defaults,//" /etc/fstab
        fi
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:high
Strategy:configure
- name: "get back device associated to mountpoint"
  shell: mount | grep ' /tmp ' |cut -d ' ' -f 1
  register: device_name
  check_mode: no
  tags:
    - mount_option_tmp_noexec
    - low
    - CCE-80150-6

- name: "get back device previous mount option"
  shell: mount | grep ' /tmp ' | sed -re 's:.*\((.*)\):\1:'
  register: device_cur_mountoption
  check_mode: no
  tags:
    - mount_option_tmp_noexec
    - low
    - CCE-80150-6

- name: "get back device fstype"
  shell: mount | grep ' /tmp ' | cut -d ' ' -f 5
  register: device_fstype
  check_mode: no
  tags:
    - mount_option_tmp_noexec
    - low
    - CCE-80150-6

- name: "Ensure permission noexecS are set on /tmp"
  mount:
    path: "/tmp"
    src: "{{device_name.stdout}}"
    opts: "{{device_cur_mountoption.stdout}},noexec"
    state: "mounted"
    fstype: "{{device_fstype.stdout}}"
  tags:
    - mount_option_tmp_noexec
    - low
    - CCE-80150-6

Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:high
Strategy:enable

part /tmp --mountoptions="noexec"

Add nosuid Option to /tmp   [ref]rule

The nosuid mount option can be used to prevent execution of setuid programs in /tmp. The SUID and SGID permissions should not be required in these world-writable directories. Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of /tmp.

Rationale:

The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from temporary storage partitions.

Severity:  low

Identifiers:  CCE-80151-4

References:  CM-7, MP-2, 1.1.3

Remediation Shell script:   (show)

NEW_OPT="nosuid"

if [ $(grep " \/tmp " /etc/fstab | grep -c "$NEW_OPT" ) -eq 0 ]; then
        MNT_OPTS=$(grep " \/tmp " /etc/fstab | awk '{print $4}')
        sed -i "s/\( \/tmp.*${MNT_OPTS}\)/\1,${NEW_OPT}/" /etc/fstab
        
        if [ $MNT_OPTS = "defaults" ]
        then
        	sed -i "s/defaults,//" /etc/fstab
        fi
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:high
Strategy:configure
- name: "get back device associated to mountpoint"
  shell: mount | grep ' /tmp ' |cut -d ' ' -f 1
  register: device_name
  check_mode: no
  tags:
    - mount_option_tmp_nosuid
    - low
    - CCE-80151-4

- name: "get back device previous mount option"
  shell: mount | grep ' /tmp ' | sed -re 's:.*\((.*)\):\1:'
  register: device_cur_mountoption
  check_mode: no
  tags:
    - mount_option_tmp_nosuid
    - low
    - CCE-80151-4

- name: "get back device fstype"
  shell: mount | grep ' /tmp ' | cut -d ' ' -f 5
  register: device_fstype
  check_mode: no
  tags:
    - mount_option_tmp_nosuid
    - low
    - CCE-80151-4

- name: "Ensure permission nosuidS are set on /tmp"
  mount:
    path: "/tmp"
    src: "{{device_name.stdout}}"
    opts: "{{device_cur_mountoption.stdout}},nosuid"
    state: "mounted"
    fstype: "{{device_fstype.stdout}}"
  tags:
    - mount_option_tmp_nosuid
    - low
    - CCE-80151-4

Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:high
Strategy:enable

part /tmp --mountoptions="nosuid"

Add nodev Option to /dev/shm   [ref]rule

The nodev mount option can be used to prevent creation of device files in /dev/shm. Legitimate character and block devices should not exist within temporary directories like /dev/shm. Add the nodev option to the fourth column of /etc/fstab for the line which controls mounting of /dev/shm.

Rationale:

The only legitimate location for device files is the /dev directory located on the root partition. The only exception to this is chroot jails.

Severity:  low

Identifiers:  CCE-80152-2

References:  CM-7, MP-2, 1.1.14

Remediation Ansible snippet:   (show)

Complexity:low
Disruption:high
Strategy:configure
- name: "get back device associated to mountpoint"
  shell: mount | grep ' /dev/shm ' |cut -d ' ' -f 1
  register: device_name
  check_mode: no
  tags:
    - mount_option_dev_shm_nodev
    - low
    - CCE-80152-2

- name: "get back device previous mount option"
  shell: mount | grep ' /dev/shm ' | sed -re 's:.*\((.*)\):\1:'
  register: device_cur_mountoption
  check_mode: no
  tags:
    - mount_option_dev_shm_nodev
    - low
    - CCE-80152-2

- name: "get back device fstype"
  shell: mount | grep ' /dev/shm ' | cut -d ' ' -f 5
  register: device_fstype
  check_mode: no
  tags:
    - mount_option_dev_shm_nodev
    - low
    - CCE-80152-2

- name: "Ensure permission nodevS are set on /dev/shm"
  mount:
    path: "/dev/shm"
    src: "{{device_name.stdout}}"
    opts: "{{device_cur_mountoption.stdout}},nodev"
    state: "mounted"
    fstype: "{{device_fstype.stdout}}"
  tags:
    - mount_option_dev_shm_nodev
    - low
    - CCE-80152-2

Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:high
Strategy:enable

part /dev/shm --mountoptions="nodev"

Add noexec Option to /dev/shm   [ref]rule

The noexec mount option can be used to prevent binaries from being executed out of /dev/shm. It can be dangerous to allow the execution of binaries from world-writable temporary storage directories such as /dev/shm. Add the noexec option to the fourth column of /etc/fstab for the line which controls mounting of /dev/shm.

Rationale:

Allowing users to execute binaries from world-writable directories such as /dev/shm can expose the system to potential compromise.

Severity:  low

Identifiers:  CCE-80153-0

References:  CM-7, MP-2, 1.1.16

Remediation Ansible snippet:   (show)

Complexity:low
Disruption:high
Strategy:configure
- name: "get back device associated to mountpoint"
  shell: mount | grep ' /dev/shm ' |cut -d ' ' -f 1
  register: device_name
  check_mode: no
  tags:
    - mount_option_dev_shm_noexec
    - low
    - CCE-80153-0

- name: "get back device previous mount option"
  shell: mount | grep ' /dev/shm ' | sed -re 's:.*\((.*)\):\1:'
  register: device_cur_mountoption
  check_mode: no
  tags:
    - mount_option_dev_shm_noexec
    - low
    - CCE-80153-0

- name: "get back device fstype"
  shell: mount | grep ' /dev/shm ' | cut -d ' ' -f 5
  register: device_fstype
  check_mode: no
  tags:
    - mount_option_dev_shm_noexec
    - low
    - CCE-80153-0

- name: "Ensure permission noexecS are set on /dev/shm"
  mount:
    path: "/dev/shm"
    src: "{{device_name.stdout}}"
    opts: "{{device_cur_mountoption.stdout}},noexec"
    state: "mounted"
    fstype: "{{device_fstype.stdout}}"
  tags:
    - mount_option_dev_shm_noexec
    - low
    - CCE-80153-0

Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:high
Strategy:enable

part /dev/shm --mountoptions="noexec"

Add nosuid Option to /dev/shm   [ref]rule

The nosuid mount option can be used to prevent execution of setuid programs in /dev/shm. The SUID and SGID permissions should not be required in these world-writable directories. Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of /dev/shm.

Rationale:

The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from temporary storage partitions.

Severity:  low

Identifiers:  CCE-80154-8

References:  CM-7, MP-2, 1.1.14

Remediation Ansible snippet:   (show)

Complexity:low
Disruption:high
Strategy:configure
- name: "get back device associated to mountpoint"
  shell: mount | grep ' /dev/shm ' |cut -d ' ' -f 1
  register: device_name
  check_mode: no
  tags:
    - mount_option_dev_shm_nosuid
    - low
    - CCE-80154-8

- name: "get back device previous mount option"
  shell: mount | grep ' /dev/shm ' | sed -re 's:.*\((.*)\):\1:'
  register: device_cur_mountoption
  check_mode: no
  tags:
    - mount_option_dev_shm_nosuid
    - low
    - CCE-80154-8

- name: "get back device fstype"
  shell: mount | grep ' /dev/shm ' | cut -d ' ' -f 5
  register: device_fstype
  check_mode: no
  tags:
    - mount_option_dev_shm_nosuid
    - low
    - CCE-80154-8

- name: "Ensure permission nosuidS are set on /dev/shm"
  mount:
    path: "/dev/shm"
    src: "{{device_name.stdout}}"
    opts: "{{device_cur_mountoption.stdout}},nosuid"
    state: "mounted"
    fstype: "{{device_fstype.stdout}}"
  tags:
    - mount_option_dev_shm_nosuid
    - low
    - CCE-80154-8

Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:high
Strategy:enable

part /dev/shm --mountoptions="nosuid"

Bind Mount /var/tmp To /tmp   [ref]rule

The /var/tmp directory is a world-writable directory. Bind-mount it to /tmp in order to consolidate temporary storage into one location protected by the same techniques as /tmp. To do so, edit /etc/fstab and add the following line:

/tmp     /var/tmp     none     rw,nodev,noexec,nosuid,bind     0 0
See the mount(8) man page for further explanation of bind mounting.

Rationale:

Having multiple locations for temporary storage is not required. Unless absolutely necessary to meet requirements, the storage location /var/tmp should be bind mounted to /tmp and thus share the same protections.

Severity:  low

Identifiers:  CCE-80155-5

References:  CM-7, 1.1.6

Remediation Shell script:   (show)

# Delete particular /etc/fstab's row if /var/tmp is already configured to
# represent a mount point (for some device or filesystem other than /tmp)
if grep -q -P '.*\/var\/tmp.*' /etc/fstab
then
  sed -i '/.*\/var\/tmp.*/d' /etc/fstab
fi

# Bind-mount /var/tmp to /tmp via /etc/fstab (preserving the /etc/fstab form)
printf "%-24s%-24s%-8s%-32s%-3s\n" "/tmp" "/var/tmp" "none" "rw,nodev,noexec,nosuid,bind" "0 0" >> /etc/fstab

Restrict Dynamic Mounting and Unmounting of Filesystems   [ref]group

Linux includes a number of facilities for the automated addition and removal of filesystems on a running system. These facilities may be necessary in many environments, but this capability also carries some risk -- whether direct risk from allowing users to introduce arbitrary filesystems, or risk that software flaws in the automated mount facility itself could allow an attacker to compromise the system.

This command can be used to list the types of filesystems that are available to the currently executing kernel:

$ find /lib/modules/`uname -r`/kernel/fs -type f -name '*.ko'
If these filesystems are not required then they can be explicitly disabled in a configuratio file in /etc/modprobe.d.

contains 7 rules

Disable Mounting of cramfs   [ref]rule

To configure the system to prevent the cramfs kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install cramfs /bin/true
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Identifiers:  CCE-80137-3

References:  CM-7, 1.1.18, 3.4.6

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install cramfs" /etc/modprobe.d/cramfs.conf ; then
        sed -i 's/^install cramfs.*/install cramfs /bin/true/g' /etc/modprobe.d/cramfs.conf
else
        echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/cramfs.conf
        echo "install cramfs /bin/true" >> /etc/modprobe.d/cramfs.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: "Ensure kernel module 'cramfs' is disabled"
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - cramfs
  tags:
    - kernel_module_cramfs_disabled
    - low
    - CCE-80137-3

Disable Mounting of freevxfs   [ref]rule

To configure the system to prevent the freevxfs kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install freevxfs /bin/true
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Identifiers:  CCE-80138-1

References:  CM-7, 1.1.19, 3.4.6

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install freevxfs" /etc/modprobe.d/freevxfs.conf ; then
        sed -i 's/^install freevxfs.*/install freevxfs /bin/true/g' /etc/modprobe.d/freevxfs.conf
else
        echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/freevxfs.conf
        echo "install freevxfs /bin/true" >> /etc/modprobe.d/freevxfs.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: "Ensure kernel module 'freevxfs' is disabled"
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - freevxfs
  tags:
    - kernel_module_freevxfs_disabled
    - low
    - CCE-80138-1

Disable Mounting of jffs2   [ref]rule

To configure the system to prevent the jffs2 kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install jffs2 /bin/true
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Identifiers:  CCE-80139-9

References:  CM-7, 1.1.20, 3.4.6

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install jffs2" /etc/modprobe.d/jffs2.conf ; then
        sed -i 's/^install jffs2.*/install jffs2 /bin/true/g' /etc/modprobe.d/jffs2.conf
else
        echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/jffs2.conf
        echo "install jffs2 /bin/true" >> /etc/modprobe.d/jffs2.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: "Ensure kernel module 'jffs2' is disabled"
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - jffs2
  tags:
    - kernel_module_jffs2_disabled
    - low
    - CCE-80139-9

Disable Mounting of hfs   [ref]rule

To configure the system to prevent the hfs kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install hfs /bin/true
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Identifiers:  CCE-80140-7

References:  CM-7, 1.1.21, 3.4.6

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install hfs" /etc/modprobe.d/hfs.conf ; then
        sed -i 's/^install hfs.*/install hfs /bin/true/g' /etc/modprobe.d/hfs.conf
else
        echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/hfs.conf
        echo "install hfs /bin/true" >> /etc/modprobe.d/hfs.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: "Ensure kernel module 'hfs' is disabled"
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - hfs
  tags:
    - kernel_module_hfs_disabled
    - low
    - CCE-80140-7

Disable Mounting of hfsplus   [ref]rule

To configure the system to prevent the hfsplus kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install hfsplus /bin/true
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Identifiers:  CCE-80141-5

References:  CM-7, 1.1.22, 3.4.6

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install hfsplus" /etc/modprobe.d/hfsplus.conf ; then
        sed -i 's/^install hfsplus.*/install hfsplus /bin/true/g' /etc/modprobe.d/hfsplus.conf
else
        echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/hfsplus.conf
        echo "install hfsplus /bin/true" >> /etc/modprobe.d/hfsplus.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: "Ensure kernel module 'hfsplus' is disabled"
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - hfsplus
  tags:
    - kernel_module_hfsplus_disabled
    - low
    - CCE-80141-5

Disable Mounting of squashfs   [ref]rule

To configure the system to prevent the squashfs kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install squashfs /bin/true
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Identifiers:  CCE-80142-3

References:  CM-7, 1.1.23, 3.4.6

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install squashfs" /etc/modprobe.d/squashfs.conf ; then
        sed -i 's/^install squashfs.*/install squashfs /bin/true/g' /etc/modprobe.d/squashfs.conf
else
        echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/squashfs.conf
        echo "install squashfs /bin/true" >> /etc/modprobe.d/squashfs.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: "Ensure kernel module 'squashfs' is disabled"
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - squashfs
  tags:
    - kernel_module_squashfs_disabled
    - low
    - CCE-80142-3

Disable Mounting of udf   [ref]rule

To configure the system to prevent the udf kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install udf /bin/true
This effectively prevents usage of this uncommon filesystem.

Rationale:

Linux kernel modules which implement filesystems that are not needed by the local system should be disabled.

Severity:  low

Identifiers:  CCE-80143-1

References:  CM-7, 1.1.24, 3.4.6

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install udf" /etc/modprobe.d/udf.conf ; then
        sed -i 's/^install udf.*/install udf /bin/true/g' /etc/modprobe.d/udf.conf
else
        echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/udf.conf
        echo "install udf /bin/true" >> /etc/modprobe.d/udf.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: "Ensure kernel module 'udf' is disabled"
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - udf
  tags:
    - kernel_module_udf_disabled
    - low
    - CCE-80143-1

Verify Permissions on Important Files and Directories   [ref]group

Permissions for many files on a system must be set restrictively to ensure sensitive information is properly protected. This section discusses important permission restrictions which can be verified to ensure that no harmful discrepancies have arisen.

contains 1 rule

Verify that All World-Writable Directories Have Sticky Bits Set   [ref]rule

When the so-called 'sticky bit' is set on a directory, only the owner of a given file may remove that file from the directory. Without the sticky bit, any user with write access to a directory may remove any file in the directory. Setting the sticky bit prevents users from removing each other's files. In cases where there is no reason for a directory to be world-writable, a better solution is to remove that permission rather than to set the sticky bit. However, if a directory is used by a particular application, consult that application's documentation instead of blindly changing modes.
To set the sticky bit on a world-writable directory DIR, run the following command:

$ sudo chmod +t DIR

Rationale:

Failing to set the sticky bit on public directories allows unauthorized users to delete files in the directory structure.

The only authorized public directories are those temporary directories supplied with the system, or those designed to be temporary file repositories. The setting is normally reserved for directories used by the system, by users for temporary file storage (such as /tmp), and for directories requiring global read/write access.

Severity:  low

Identifiers:  CCE-80130-8

References:  AC-6, 1.1.17

Restrict Programs from Dangerous Execution Patterns   [ref]group

The recommendations in this section are designed to ensure that the system's features to protect against potentially dangerous program execution are activated. These protections are applied at the system initialization or kernel level, and defend against certain types of badly-configured or compromised programs.

contains 3 rules

Disable Core Dumps   [ref]group

A core dump file is the memory image of an executable program when it was terminated by the operating system due to errant behavior. In most cases, only software developers legitimately need to access these files. The core dump files may also contain sensitive information, or unnecessarily occupy large amounts of disk space.

Once a hard limit is set in /etc/security/limits.conf, a user cannot increase that limit within his or her own session. If access to core dumps is required, consider restricting them to only certain users or groups. See the limits.conf man page for more information.

The core dumps of setuid programs are further protected. The sysctl variable fs.suid_dumpable controls whether the kernel allows core dumps from these programs at all. The default value of 0 is recommended.

contains 2 rules

Disable Core Dumps for All Users   [ref]rule

To disable core dumps for all users, add the following line to /etc/security/limits.conf:

*     hard   core    0

Rationale:

A core dump includes a memory image taken at the time the operating system terminates an application. The memory image could contain sensitive data and is generally useful only for developers trying to debug problems.

Severity:  low

Identifiers:  CCE-80169-6

References:  SC-5, 1.6.1

Remediation Shell script:   (show)

echo "*     hard   core    0" >> /etc/security/limits.conf

Disable Core Dumps for SUID programs   [ref]rule

To set the runtime status of the fs.suid_dumpable kernel parameter, run the following command:

$ sudo sysctl -w fs.suid_dumpable=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
fs.suid_dumpable = 0

Rationale:

The core dump of a setuid program is more likely to contain sensitive data, as the program itself runs with greater privileges than the user who initiated execution of the program. Disabling the ability for any setuid program to write a core file decreases the risk of unauthorized access of such data.

Severity:  low

Identifiers:  CCE-26900-1

References:  SI-11, 1.6.1

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for fs.suid_dumpable
#
/sbin/sysctl -q -n -w fs.suid_dumpable=0

#
# If fs.suid_dumpable present in /etc/sysctl.conf, change value to "0"
#	else, add "fs.suid_dumpable = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^fs.suid_dumpable' "0" 'CCE-26900-1'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl fs.suid_dumpable is set to 0
  sysctl:
    name: fs.suid_dumpable
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_fs_suid_dumpable
    - low
    - CCE-26900-1

Enable ExecShield   [ref]group

ExecShield describes kernel features that provide protection against exploitation of memory corruption errors such as buffer overflows. These features include random placement of the stack and other memory regions, prevention of execution in memory that should only hold data, and special handling of text buffers. These protections are enabled by default on 32-bit systems and controlled through sysctl variables kernel.exec-shield and kernel.randomize_va_space. On the latest 64-bit systems, kernel.exec-shield cannot be enabled or disabled with sysctl.

contains 1 rule

Enable Randomized Layout of Virtual Address Space   [ref]rule

To set the runtime status of the kernel.randomize_va_space kernel parameter, run the following command:

$ sudo sysctl -w kernel.randomize_va_space=2
If this is not the system's default value, add the following line to /etc/sysctl.conf:
kernel.randomize_va_space = 2

Rationale:

Address space layout randomization (ASLR) makes it more difficult for an attacker to predict the location of attack code they have introduced into a process's address space during an attempt at exploitation. Additionally, ASLR makes it more difficult for an attacker to know the location of existing code in order to re-purpose it using return oriented programming (ROP) techniques.

Severity:  medium

Identifiers:  CCE-27127-0

References:  SC-30(2), 1.6.1, 3.1.7

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' 'CCE-27127-0'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl kernel.randomize_va_space is set to 2
  sysctl:
    name: kernel.randomize_va_space
    value: 2
    state: present
    reload: yes
  tags:
    - sysctl_kernel_randomize_va_space
    - medium
    - CCE-27127-0

SELinux   [ref]group

SELinux is a feature of the Linux kernel which can be used to guard against misconfigured or compromised programs. SELinux enforces the idea that programs should be limited in what files they can access and what actions they can take.

The default SELinux policy, as configured on Red Hat Enterprise Linux 7, has been sufficiently developed and debugged that it should be usable on almost any Red Hat system with minimal configuration and a small amount of system administrator training. This policy prevents system services - including most of the common network-visible services such as mail servers, FTP servers, and DNS servers - from accessing files which those services have no valid reason to access. This action alone prevents a huge amount of possible damage from network attacks against services, from trojaned software, and so forth.

This guide recommends that SELinux be enabled using the default (targeted) policy on every Red Hat system, unless that system has unusual requirements which make a stronger policy appropriate.

For more information on SELinux, see https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide

contains 6 rules

Ensure SELinux Not Disabled in /etc/default/grub   [ref]rule

SELinux can be disabled at boot time by an argument in /etc/default/grub. Remove any instances of selinux=0 from the kernel arguments in that file to prevent SELinux from being disabled at boot.

Rationale:

Disabling a major host protection feature, such as SELinux, at boot time prevents it from confining system services at boot time. Further, it increases the chances that it will remain off during system operation.

Severity:  medium

Identifiers:  CCE-26961-3

References:  AC-3, AC-3(3), AC-3(4), AC-4, AC-6, AU-9, SI-6(a), 22, 32, 1.4.1, 3.1.2, 3.7.2

Remediation Shell script:   (show)

sed -i --follow-symlinks "s/selinux=0//gI" /etc/default/grub /etc/grub2.cfg /etc/grub.d/*
sed -i --follow-symlinks "s/enforcing=0//gI" /etc/default/grub /etc/grub2.cfg /etc/grub.d/*
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: "Ensure SELinux Not Disabled in /etc/default/grub"
  replace:
    dest: /etc/default/grub
    regexp: "selinux=0"
  tags:
    - enable_selinux_bootloader
    - medium
    - CCE-26961-3

Ensure SELinux State is Enforcing   [ref]rule

The SELinux state should be set to enforcing at system boot time. In the file /etc/selinux/config, add or correct the following line to configure the system to boot into enforcing mode:

SELINUX=enforcing

Rationale:

Setting the SELinux state to enforcing ensures SELinux is able to confine potentially compromised processes to the security policy, which is designed to prevent them from causing damage to the system or further elevating their privileges.

Severity:  high

Identifiers:  CCE-27334-2

References:  RHEL-07-020210, AC-3, AC-3(3), AC-3(4), AC-4, AC-6, AU-9, SI-6(a), 2165, 2696, 1.4.2, SRG-OS-000445-GPOS-00199, 3.1.2, 3.7.2

Remediation Shell script:   (show)


var_selinux_state="enforcing"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state 'CCE-27334-2' '%s=%s'

fixfiles onboot
fixfiles -f relabel
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: "Ensure SELinux State is Enforcing (persistent)"
  selinux:
    state: enforcing
  tags:
    - selinux_state
    - high
    - CCE-27334-2

Configure SELinux Policy   [ref]rule

The SELinux targeted policy is appropriate for general-purpose desktops and servers, as well as systems in many other roles. To configure the system to use this policy, add or correct the following line in /etc/selinux/config:

SELINUXTYPE=targeted
Other policies, such as mls, provide additional security labeling and greater confinement but are not compatible with many general-purpose use cases.

Rationale:

Setting the SELinux policy to targeted or a more specialized policy ensures the system will confine processes that are likely to be targeted for exploitation, such as network or system services.

Note: During the development or debugging of SELinux modules, it is common to temporarily place non-production systems in permissive mode. In such temporary cases, SELinux policies should be developed, and once work is completed, the system should be reconfigured to targeted.

Severity:  high

Identifiers:  CCE-27279-9

References:  RHEL-07-020220, AC-3, AC-3(3), AC-3(4), AC-4, AC-6, AU-9, SI-6(a), 2696, 1.4.3, SRG-OS-000445-GPOS-00199, 3.1.2, 3.7.2

Remediation Shell script:   (show)


var_selinux_policy_name="targeted"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysconfig/selinux' '^SELINUXTYPE=' $var_selinux_policy_name 'CCE-27279-9' '%s=%s'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: "Configure SELinux Policy"
  selinux:
    policy: targeted
  tags:
    - selinux_policytype
    - high
    - CCE-27279-9

Uninstall setroubleshoot Package   [ref]rule

The SETroubleshoot service notifies desktop users of SELinux denials. The service provides information around configuration errors, unauthorized intrusions, and other potential errors. The setroubleshoot package can be removed with the following command:

$ sudo yum erase setroubleshoot

Rationale:

The SETroubleshoot service is an unnecessary daemon to have running on a server

Severity:  low

Identifiers:  CCE-80444-3

References:  1.4.4

Uninstall mcstrans Package   [ref]rule

The mcstransd daemon provides category label information to client processes requesting information. The label translations are defined in /etc/selinux/targeted/setrans.conf. The mcstrans package can be removed with the following command:

$ sudo yum erase mcstrans

Rationale:

Since this service is not used very often, disable it to reduce the amount of potentially vulnerable code running on the system. NOTE: This rule was added in support of the CIS RHEL6 v1.2.0 benchmark. Please note that Red Hat does not feel this rule is security relevant.

Severity:  low

Identifiers:  CCE-80445-0

Ensure No Daemons are Unconfined by SELinux   [ref]rule

Daemons for which the SELinux policy does not contain rules will inherit the context of the parent process. Because daemons are launched during startup and descend from the init process, they inherit the initrc_t context.

To check for unconfined daemons, run the following command:

$ sudo ps -eZ | egrep "initrc" | egrep -vw "tr|ps|egrep|bash|awk" | tr ':' ' ' | awk '{ print $NF }'
It should produce no output in a well-configured system.

Rationale:

Daemons which run with the initrc_t context may cause AVC denials, or allow privileges that the daemon does not require.

Severity:  medium

Identifiers:  CCE-27288-0

References:  AC-6, AU-9, CM-7, 1.4.6, 3.1.2, 3.1.5, 3.7.2

Account and Access Control   [ref]group

In traditional Unix security, if an attacker gains shell access to a certain login account, they can perform any action or access any file to which that account has access. Therefore, making it more difficult for unauthorized people to gain shell access to accounts, particularly to privileged accounts, is a necessary part of securing a system. This section introduces mechanisms for restricting access to accounts under Red Hat Enterprise Linux 7.

contains 16 rules

Protect Accounts by Restricting Password-Based Login   [ref]group

Conventionally, Unix shell accounts are accessed by providing a username and password to a login program, which tests these values for correctness using the /etc/passwd and /etc/shadow files. Password-based login is vulnerable to guessing of weak passwords, and to sniffing and man-in-the-middle attacks against passwords entered over a network or at an insecure console. Therefore, mechanisms for accessing accounts by entering usernames and passwords should be restricted to those which are operationally necessary.

contains 2 rules

Restrict Root Logins   [ref]group

Direct root logins should be allowed only for emergency use. In normal situations, the administrator should access the system via a unique unprivileged account, and then use su or sudo to execute privileged commands. Discouraging administrators from accessing the root account directly ensures an audit trail in organizations with multiple administrators. Locking down the channels through which root can connect directly also reduces opportunities for password-guessing against the root account. The login program uses the file /etc/securetty to determine which interfaces should allow root logins. The virtual devices /dev/console and /dev/tty* represent the system consoles (accessible via the Ctrl-Alt-F1 through Ctrl-Alt-F6 keyboard sequences on a default installation). The default securetty file also contains /dev/vc/*. These are likely to be deprecated in most environments, but may be retained for compatibility. Root should also be prohibited from connecting via network protocols. Other sections of this document include guidance describing how to prevent root from logging in via SSH.

contains 1 rule

Direct root Logins Not Allowed   [ref]rule

To further limit access to the root account, administrators can disable root logins at the console by editing the /etc/securetty file. This file lists all devices the root user is allowed to login to. If the file does not exist at all, the root user can login through any communication device on the system, whether via the console or via a raw network interface. This is dangerous as user can login to the system as root via Telnet, which sends the password in plain text over the network. By default, Red Hat Enteprise Linux's /etc/securetty file only allows the root user to login at the console physically attached to the system. To prevent root from logging in, remove the contents of this file. To prevent direct root logins, remove the contents of this file by typing the following command:

$ sudo echo > /etc/securetty

Rationale:

Disabling direct root logins ensures proper accountability and multifactor authentication to privileged accounts. Users will first login, then escalate to privileged (root) access via su / sudo. This is required for FISMA Low and FISMA Moderate systems.

Severity:  medium

Identifiers:  CCE-27294-8

References:  IA-2(1), 6.4, 3.1.1, 3.1.6

Remediation Shell script:   (show)

echo > /etc/securetty

Set Password Expiration Parameters   [ref]group

The file /etc/login.defs controls several password-related settings. Programs such as passwd, su, and login consult /etc/login.defs to determine behavior with regard to password aging, expiration warnings, and length. See the man page login.defs(5) for more information.

Users should be forced to change their passwords, in order to decrease the utility of compromised passwords. However, the need to change passwords often should be balanced against the risk that users will reuse or write down passwords if forced to change them too often. Forcing password changes every 90-360 days, depending on the environment, is recommended. Set the appropriate value as PASS_MAX_DAYS and apply it to existing accounts with the -M flag.

The PASS_MIN_DAYS (-m) setting prevents password changes for 7 days after the first change, to discourage password cycling. If you use this setting, train users to contact an administrator for an emergency password change in case a new password becomes compromised. The PASS_WARN_AGE (-W) setting gives users 7 days of warnings at login time that their passwords are about to expire.

For example, for each existing human user USER, expiration parameters could be adjusted to a 180 day maximum password age, 7 day minimum password age, and 7 day warning period with the following command:

$ sudo chage -M 180 -m 7 -W 7 USER

contains 1 rule

Protect Accounts by Configuring PAM   [ref]group

PAM, or Pluggable Authentication Modules, is a system which implements modular authentication for Linux programs. PAM provides a flexible and configurable architecture for authentication, and it should be configured to minimize exposure to unnecessary risk. This section contains guidance on how to accomplish that.

PAM is implemented as a set of shared objects which are loaded and invoked whenever an application wishes to authenticate a user. Typically, the application must be running as root in order to take advantage of PAM, because PAM's modules often need to be able to access sensitive stores of account information, such as /etc/shadow. Traditional privileged network listeners (e.g. sshd) or SUID programs (e.g. sudo) already meet this requirement. An SUID root application, userhelper, is provided so that programs which are not SUID or privileged themselves can still take advantage of PAM.

PAM looks in the directory /etc/pam.d for application-specific configuration information. For instance, if the program login attempts to authenticate a user, then PAM's libraries follow the instructions in the file /etc/pam.d/login to determine what actions should be taken.

One very important file in /etc/pam.d is /etc/pam.d/system-auth. This file, which is included by many other PAM configuration files, defines 'default' system authentication measures. Modifying this file is a good way to make far-reaching authentication changes, for instance when implementing a centralized authentication service.

Warning:  Be careful when making changes to PAM's configuration files. The syntax for these files is complex, and modifications can have unexpected consequences. The default configurations shipped with applications should be sufficient for most users.
Warning:  Running authconfig or system-config-authentication will re-write the PAM configuration files, destroying any manually made changes and replacing them with a series of system defaults. One reference to the configuration file syntax can be found at http://www.kernel.org/pub/linux/libs/pam/Linux-PAM-html/sag-configuration-file.html .
contains 10 rules

Set Password Quality Requirements   [ref]group

The default pam_pwquality PAM module provides strength checking for passwords. It performs a number of checks, such as making sure passwords are not similar to dictionary words, are of at least a certain length, are not the previous password reversed, and are not simply a change of case from the previous password. It can also require passwords to be in certain character classes. The pam_pwquality module is the preferred way of configuring password requirements.

The pam_cracklib PAM module can also provide strength checking for passwords as the pam_pwquality module. It performs a number of checks, such as making sure passwords are not similar to dictionary words, are of at least a certain length, are not the previous password reversed, and are not simply a change of case from the previous password. It can also require passwords to be in certain character classes.

The man pages pam_pwquality(8) and pam_cracklib(8) provide information on the capabilities and configuration of each.

contains 5 rules

Set Password Quality Requirements with pam_pwquality   [ref]group

The pam_pwquality PAM module can be configured to meet requirements for a variety of policies.

For example, to configure pam_pwquality to require at least one uppercase character, lowercase character, digit, and other (special) character, make sure that pam_pwquality exists in /etc/pam.d/system-auth:

password    requisite     pam_pwquality.so try_first_pass local_users_only retry=3 authtok_type=
If no such line exists, add one as the first line of the password section in /etc/pam.d/system-auth. Next, modify the settings in /etc/security/pwquality.conf to match the following:
difok = 4
minlen = 14
dcredit = -1
ucredit = -1
lcredit = -1
ocredit = -1
maxrepeat = 3
The arguments can be modified to ensure compliance with your organization's security policy. Discussion of each parameter follows.

Warning:  Note that the password quality requirements are not enforced for the root account for some reason.
contains 5 rules

Set Password Retry Prompts Permitted Per-Session   [ref]rule

To configure the number of retry prompts that are permitted per-session:

Edit the pam_pwquality.so statement in /etc/pam.d/system-auth to show retry=3, or a lower value if site policy is more restrictive.

The DoD requirement is a maximum of 3 prompts per session.

Rationale:

Setting the password retry prompts that are permitted on a per-session basis to a low value requires some software, such as SSH, to re-connect. This can slow down and draw additional attention to some types of password-guessing attacks. Note that this is different from account lockout, which is provided by the pam_faillock module.

Severity:  low

Identifiers:  CCE-27160-1

References:  RHEL-07-010119, CM-6(b), IA-5(c), 366, 6.3.2, SRG-OS-000480-GPOS-00225, 5.5.3

Remediation Shell script:   (show)


var_password_pam_retry="3"

if grep -q "retry=" /etc/pam.d/system-auth; then   
	sed -i --follow-symlinks "s/\(retry *= *\).*/\1$var_password_pam_retry/" /etc/pam.d/system-auth
else
	sed -i --follow-symlinks "/pam_pwquality.so/ s/$/ retry=$var_password_pam_retry/" /etc/pam.d/system-auth
fi

Set Password Strength Minimum Digit Characters   [ref]rule

The pam_pwquality module's dcredit parameter controls requirements for usage of digits in a password. When set to a negative number, any password will be required to contain that many digits. When set to a positive number, pam_pwquality will grant +1 additional length credit for each digit. Modify the dcredit setting in /etc/security/pwquality.conf to require the use of a digit in passwords.

Rationale:

Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possble combinations that need to be tested before the password is compromised. Requiring digits makes password guessing attacks more difficult by ensuring a larger search space.

Severity:  medium

Identifiers:  CCE-27214-6

References:  RHEL-07-010140, IA-5(1)(a), IA-5(b), IA-5(c), 194, 194, SRG-OS-000071-GPOS-00039, Req-8.2.3, 6.3.2

Remediation Shell script:   (show)


var_password_pam_dcredit="-1"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/security/pwquality.conf' '^dcredit' $var_password_pam_dcredit 'CCE-27214-6' '%s = %s'
Remediation Ansible snippet:   (show)

- name: "Ensure PAM variable dcredit is set to -1"
  lineinfile:
    create=yes
    dest="/etc/security/pwquality.conf"
    regexp="^dcredit"
    line="dcredit = -1"
  tags:
    - accounts_password_pam_dcredit
    - medium
    - CCE-27214-6

Set Password Minimum Length   [ref]rule

The pam_pwquality module's minlen parameter controls requirements for minimum characters required in a password. Add minlen=14 after pam_pwquality to set minimum password length requirements.

Rationale:

The shorter the password, the lower the number of possible combinations that need to be tested before the password is compromised.
Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks. Password length is one factor of several that helps to determine strength and how long it takes to crack a password. Use of more characters in a password helps to exponentially increase the time and/or resources required to compromose the password.

Severity:  medium

Identifiers:  CCE-27293-0

References:  RHEL-07-010280, IA-5(1)(a), 205, SRG-OS-000078-GPOS-00046, Req-8.2.3, 6.3.2

Remediation Shell script:   (show)


var_password_pam_minlen="14"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/security/pwquality.conf' '^minlen' $var_password_pam_minlen 'CCE-27293-0' '%s = %s'
Remediation Ansible snippet:   (show)

- name: "Ensure PAM variable minlen is set to 14"
  lineinfile:
    create=yes
    dest="/etc/security/pwquality.conf"
    regexp="^minlen"
    line="minlen = 14"
  tags:
    - accounts_password_pam_minlen
    - medium
    - CCE-27293-0

Set Password Strength Minimum Uppercase Characters   [ref]rule

The pam_pwquality module's ucredit= parameter controls requirements for usage of uppercase letters in a password. When set to a negative number, any password will be required to contain that many uppercase characters. When set to a positive number, pam_pwquality will grant +1 additional length credit for each uppercase character. Modify the ucredit setting in /etc/security/pwquality.conf to require the use of an uppercase character in passwords.

Rationale:

Use of a complex password helps to increase the time and resources reuiqred to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possible combinations that need to be tested before the password is compromised.

Severity:  medium

Identifiers:  CCE-27200-5

References:  RHEL-07-010120, IA-5(b), IA-5(c), IA-5(1)(a), 192, SRG-OS-000069-GPOS-00037, Req-8.2.3, 6.3.2

Remediation Shell script:   (show)


var_password_pam_ucredit="-1"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/security/pwquality.conf' '^ucredit' $var_password_pam_ucredit 'CCE-27200-5' '%s = %s'
Remediation Ansible snippet:   (show)

- name: "Ensure PAM variable ucredit is set to -1"
  lineinfile:
    create=yes
    dest="/etc/security/pwquality.conf"
    regexp="^ucredit"
    line="ucredit = -1"
  tags:
    - accounts_password_pam_ucredit
    - medium
    - CCE-27200-5

Set Password Strength Minimum Special Characters   [ref]rule

The pam_pwquality module's ocredit= parameter controls requirements for usage of special (or "other") characters in a password. When set to a negative number, any password will be required to contain that many special characters. When set to a positive number, pam_pwquality will grant +1 additional length credit for each special character. Modify the ocredit setting in /etc/security/pwquality.conf to equal -1 to require use of a special character in passwords.

Rationale:

Use of a complex password helps to increase the time and resources required to compromise the password. Password complexity, or strength, is a measure of the effectiveness of a password in resisting attempts at guessing and brute-force attacks.

Password complexity is one factor of several that determines how long it takes to crack a password. The more complex the password, the greater the number of possble combinations that need to be tested before the password is compromised. Requiring a minimum number of special characters makes password guessing attacks more difficult by ensuring a larger search space.

Severity:  medium

Identifiers:  CCE-27360-7

References:  RHEL-07-010150, IA-5(b), IA-5(c), IA-5(1)(a), 1619, SRG-OS-000266-GPOS-00101

Remediation Shell script:   (show)


var_password_pam_ocredit="-1"
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/security/pwquality.conf' '^ocredit' $var_password_pam_ocredit 'CCE-27360-7' '%s = %s'
Remediation Ansible snippet:   (show)

- name: "Ensure PAM variable ocredit is set to -1"
  lineinfile:
    create=yes
    dest="/etc/security/pwquality.conf"
    regexp="^ocredit"
    line="ocredit = -1"
  tags:
    - accounts_password_pam_ocredit
    - medium
    - CCE-27360-7

Set Lockouts for Failed Password Attempts   [ref]group

The pam_faillock PAM module provides the capability to lock out user accounts after a number of failed login attempts. Its documentation is available in /usr/share/doc/pam-VERSION/txts/README.pam_faillock.

Warning:  Locking out user accounts presents the risk of a denial-of-service attack. The lockout policy must weigh whether the risk of such a denial-of-service attack outweighs the benefits of thwarting password guessing attacks.
contains 3 rules

Set Deny For Failed Password Attempts   [ref]rule

To configure the system to lock out accounts after a number of incorrect login attempts using pam_faillock.so, modify the content of both /etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:

  • add the following line immediately before the pam_unix.so statement in the AUTH section:
    auth required pam_faillock.so preauth silent deny=5 unlock_time=900 fail_interval=900
  • add the following line immediately after the pam_unix.so statement in the AUTH section:
    auth [default=die] pam_faillock.so authfail deny=5 unlock_time=900 fail_interval=900
  • add the following line immediately before the pam_unix.so statement in the ACCOUNT section:
    account required pam_faillock.so

Rationale:

Locking out user accounts after a number of incorrect attempts prevents direct password guessing attacks.

Severity:  medium

Remediation Shell script:   (show)


var_accounts_passwords_pam_faillock_deny="5"

AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"

# This script fixes absence of pam_faillock.so in PAM stack or the
# absense of deny=[0-9]+ in pam_faillock.so arguments
# When inserting auth pam_faillock.so entries,
# the entry with preauth argument will be added before pam_unix.so module
# and entry with authfail argument will be added before pam_deny.so module.

# The placement of pam_faillock.so entries will not be changed
# if they are already present

for pamFile in "${AUTH_FILES[@]}"
do
	
	# pam_faillock.so already present?
	if grep -q "^auth.*pam_faillock.so.*" $pamFile; then

		# pam_faillock.so present, deny directive present?
		if grep -q "^auth.*[default=die].*pam_faillock.so.*authfail.*deny=" $pamFile; then

			# both pam_faillock.so & deny present, just correct deny directive value
			sed -i --follow-symlinks "s/\(^auth.*required.*pam_faillock.so.*preauth.*silent.*\)\(deny *= *\).*/\1\2$var_accounts_passwords_pam_faillock_deny/" $pamFile
			sed -i --follow-symlinks "s/\(^auth.*[default=die].*pam_faillock.so.*authfail.*\)\(deny *= *\).*/\1\2$var_accounts_passwords_pam_faillock_deny/" $pamFile

		# pam_faillock.so present, but deny directive not yet
		else

			# append correct deny value to appropriate places
			sed -i --follow-symlinks "/^auth.*required.*pam_faillock.so.*preauth.*silent.*/ s/$/ deny=$var_accounts_passwords_pam_faillock_deny/" $pamFile
			sed -i --follow-symlinks "/^auth.*[default=die].*pam_faillock.so.*authfail.*/ s/$/ deny=$var_accounts_passwords_pam_faillock_deny/" $pamFile
		fi

	# pam_faillock.so not present yet
	else

		# insert pam_faillock.so preauth row with proper value of the 'deny' option before pam_unix.so
		sed -i --follow-symlinks "/^auth.*pam_unix.so.*/i auth        required      pam_faillock.so preauth silent deny=$var_accounts_passwords_pam_faillock_deny" $pamFile
		# insert pam_faillock.so authfail row with proper value of the 'deny' option before pam_deny.so, after all modules which determine authentication outcome.
		sed -i --follow-symlinks "/^auth.*pam_deny.so.*/i auth        [default=die] pam_faillock.so authfail deny=$var_accounts_passwords_pam_faillock_deny" $pamFile
	fi

	# add pam_faillock.so into account phase
	if ! grep -q "^account.*required.*pam_faillock.so" $pamFile; then
		sed -i --follow-symlinks "/^account.*required.*pam_unix.so/i account     required      pam_faillock.so" $pamFile
	fi
done

Set Lockout Time For Failed Password Attempts   [ref]rule

To configure the system to lock out accounts after a number of incorrect login attempts and require an administrator to unlock the account using pam_faillock.so, modify the content of both /etc/pam.d/system-auth and /etc/pam.d/password-auth as follows:

  • add the following line immediately before the pam_unix.so statement in the AUTH section:
    auth required pam_faillock.so preauth silent deny=5 unlock_time=900 fail_interval=900
  • add the following line immediately after the pam_unix.so statement in the AUTH section:
    auth [default=die] pam_faillock.so authfail deny=5 unlock_time=900 fail_interval=900
  • add the following line immediately before the pam_unix.so statement in the ACCOUNT section:
    account required pam_faillock.so

Rationale:

Locking out user accounts after a number of incorrect attempts prevents direct password guessing attacks. Ensuring that an administrator is involved in unlocking locked accounts draws appropriate attention to such situations.

Severity:  medium

Remediation Shell script:   (show)


var_accounts_passwords_pam_faillock_unlock_time="900"

AUTH_FILES[0]="/etc/pam.d/system-auth"
AUTH_FILES[1]="/etc/pam.d/password-auth"

for pamFile in "${AUTH_FILES[@]}"
do
	
	# pam_faillock.so already present?
	if grep -q "^auth.*pam_faillock.so.*" $pamFile; then

		# pam_faillock.so present, unlock_time directive present?
		if grep -q "^auth.*[default=die].*pam_faillock.so.*authfail.*unlock_time=" $pamFile; then

			# both pam_faillock.so & unlock_time present, just correct unlock_time directive value
			sed -i --follow-symlinks "s/\(^auth.*required.*pam_faillock.so.*preauth.*silent.*\)\(unlock_time *= *\).*/\1\2$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
			sed -i --follow-symlinks "s/\(^auth.*[default=die].*pam_faillock.so.*authfail.*\)\(unlock_time *= *\).*/\1\2$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile

		# pam_faillock.so present, but unlock_time directive not yet
		else

			# append correct unlock_time value to appropriate places
			sed -i --follow-symlinks "/^auth.*required.*pam_faillock.so.*preauth.*silent.*/ s/$/ unlock_time=$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
			sed -i --follow-symlinks "/^auth.*[default=die].*pam_faillock.so.*authfail.*/ s/$/ unlock_time=$var_accounts_passwords_pam_faillock_unlock_time/" $pamFile
		fi

	# pam_faillock.so not present yet
	else

		# insert pam_faillock.so preauth & authfail rows with proper value of the 'unlock_time' option
		sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/i auth        required      pam_faillock.so preauth silent unlock_time=$var_accounts_passwords_pam_faillock_unlock_time" $pamFile
		sed -i --follow-symlinks "/^auth.*sufficient.*pam_unix.so.*/a auth        [default=die] pam_faillock.so authfail unlock_time=$var_accounts_passwords_pam_faillock_unlock_time" $pamFile
		sed -i --follow-symlinks "/^account.*required.*pam_unix.so/i account     required      pam_faillock.so" $pamFile
	fi
done

Limit Password Reuse   [ref]rule

Do not allow users to reuse recent passwords. This can be accomplished by using the remember option for the pam_unix or pam_pwhistory PAM modules.

In the file /etc/pam.d/system-auth, append remember=5 to the line which refers to the pam_unix.so or pam_pwhistory.somodule, as shown below:

  • for the pam_unix.so case:
    password sufficient pam_unix.so ...existing_options... remember=5
  • for the pam_pwhistory.so case:
    password requisite pam_pwhistory.so ...existing_options... remember=5
The DoD STIG requirement is 5 passwords.

Rationale:

Preventing re-use of previous passwords helps ensure that a compromised password is not re-used by a user.

Severity:  medium

Remediation Shell script:   (show)


var_password_pam_unix_remember="5"

if grep -q "remember=" /etc/pam.d/system-auth; then   
	sed -i --follow-symlinks "s/\(^password.*sufficient.*pam_unix.so.*\)\(\(remember *= *\)[^ $]*\)/\1remember=$var_password_pam_unix_remember/" /etc/pam.d/system-auth
else
	sed -i --follow-symlinks "/^password[[:space:]]\+sufficient[[:space:]]\+pam_unix.so/ s/$/ remember=$var_password_pam_unix_remember/" /etc/pam.d/system-auth
fi

Set Password Hashing Algorithm   [ref]group

The system's default algorithm for storing password hashes in /etc/shadow is SHA-512. This can be configured in several locations.

contains 2 rules

Set PAM's Password Hashing Algorithm   [ref]rule

The PAM system service can be configured to only store encrypted representations of passwords. In /etc/pam.d/system-auth, the password section of the file controls which PAM modules execute during a password change. Set the pam_unix.so module in the password section to include the argument sha512, as shown below:

password    sufficient    pam_unix.so sha512 other arguments...

This will help ensure when local users change their passwords, hashes for the new passwords will be generated using the SHA-512 algorithm. This is the default.

Rationale:

Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm are no more protected than if they are kepy in plain text.

This setting ensures user and group account administration utilities are configured to store only encrypted representations of passwords. Additionally, the crypt_style configuration option ensures the use of a strong hashing algorithm that makes password cracking attacks more difficult.

Severity:  medium

Remediation Shell script:   (show)

if ! grep -q "^password.*sufficient.*pam_unix.so.*sha512" /etc/pam.d/system-auth; then   
	sed -i --follow-symlinks "/^password.*sufficient.*pam_unix.so/ s/$/ sha512/" /etc/pam.d/system-auth
fi

Set Password Hashing Algorithm in /etc/login.defs   [ref]rule

In /etc/login.defs, add or correct the following line to ensure the system will use SHA-512 as the hashing algorithm:

ENCRYPT_METHOD SHA512

Rationale:

Passwords need to be protected at all times, and encryption is the standard method for protecting passwords. If passwords are not encrypted, they can be plainly read (i.e., clear text) and easily compromised. Passwords that are encrypted with a weak algorithm are no more protected than if they are kept in plain text.

Using a stronger hashing algorithm makes password cracking attacks more difficult.

Severity:  medium

Remediation Shell script:   (show)

if grep --silent ^ENCRYPT_METHOD /etc/login.defs ; then
	sed -i 's/^ENCRYPT_METHOD.*/ENCRYPT_METHOD SHA512/g' /etc/login.defs
else
	echo "" >> /etc/login.defs
	echo "ENCRYPT_METHOD SHA512" >> /etc/login.defs
fi

Protect Physical Console Access   [ref]group

It is impossible to fully protect a system from an attacker with physical access, so securing the space in which the system is located should be considered a necessary step. However, there are some steps which, if taken, make it more difficult for an attacker to quickly or undetectably modify a system from its console.

contains 4 rules

Set Boot Loader Password   [ref]group

During the boot process, the boot loader is responsible for starting the execution of the kernel and passing options to it. The boot loader allows for the selection of different kernels - possibly on different partitions or media. The default Red Hat Enterprise Linux boot loader for x86 systems is called GRUB2. Options it can pass to the kernel include single-user mode, which provides root access without any authentication, and the ability to disable SELinux. To prevent local users from modifying the boot parameters and endangering security, protect the boot loader configuration with a password and ensure its configuration file's permissions are set properly.

contains 4 rules

Verify /boot/grub2/grub.cfg User Ownership   [ref]rule

The file /boot/grub2/grub.cfg should be owned by the root user to prevent destruction or modification of the file. To properly set the owner of /boot/grub2/grub.cfg, run the command:

$ sudo chown root /boot/grub2/grub.cfg

Rationale:

Only root should be able to modify important boot parameters.

Severity:  medium

Identifiers:  CCE-26860-7

References:  AC-6(7), 225, Req-7.1, 1.5.1, 5.5.2.2, 3.4.5

Remediation Shell script:   (show)

chown root /boot/grub2/grub.cfg

Verify /boot/grub2/grub.cfg Group Ownership   [ref]rule

The file /boot/grub2/grub.cfg should be group-owned by the root group to prevent destruction or modification of the file. To properly set the group owner of /boot/grub2/grub.cfg, run the command:

$ sudo chgrp root /boot/grub2/grub.cfg

Rationale:

The root group is a highly-privileged group. Furthermore, the group-owner of this file should not have any access privileges anyway.

Severity:  medium

Identifiers:  CCE-26812-8

References:  AC-6(7), 225, Req-7.1, 1.5.1, 5.5.2.2, 3.4.5

Remediation Shell script:   (show)

chgrp root /boot/grub2/grub.cfg

Verify /boot/grub2/grub.cfg Permissions   [ref]rule

File permissions for /boot/grub2/grub.cfg should be set to 600. To properly set the permissions of /boot/grub2/grub.cfg, run the command:

$ sudo chmod 600 /boot/grub2/grub.cfg

Rationale:

Proper permissions ensure that only the root user can modify important boot parameters.

Severity:  medium

Identifiers:  CCE-27054-6

References:  AC-6(7), 225, 1.5.2, 3.4.5

Remediation Shell script:   (show)

chmod 600 /boot/grub2/grub.cfg

Set Boot Loader Password   [ref]rule

The grub2 boot loader should have a superuser account and password protection enabled to protect boot-time settings.

To do so, select a superuser account and password and add them into the /etc/grub.d/01_users configuration file.

Since plaintext passwords are a security risk, generate a hash for the pasword by running the following command:

$ grub2-mkpasswd-pbkdf2
When prompted, enter the password that was selected and insert the returned password hash into the /etc/grub.d/01_users configuration file immediately after the superuser account. (Use the output from grub2-mkpasswd-pbkdf2 as the value of password-hash):
password_pbkdf2 superusers-account password-hash
NOTE: It is recommended not to use common administrator account names like root, admin, or administrator for the grub2 superuser account.

To meet FISMA Moderate, the bootloader superuser account and password MUST differ from the root account and password. Once the superuser account and password have been added, update the grub.cfg file by running:
grub2-mkconfig -o /boot/grub2/grub.cfg
NOTE: Do NOT manually add the superuser account and password to the grub.cfg file as the grub2-mkconfig command overwrites this file.

Warning:  To prevent hard-coded passwords, automatic remediation of this control is not available. Remediation must be automated as a component of machine provisioning, or followed manually as outlined above.
Rationale:

Password protection on the boot loader configuration ensures users with physical access cannot trivially alter important bootloader settings. These include which kernel to use, and whether to enter single-user mode. For more information on how to configure the grub2 superuser account and password, please refer to

Severity:  high

Identifiers:  CCE-27309-4

References:  RHEL-07-010480, IA-2(1), IA-5(e), AC-3, 213, SRG-OS-000080-GPOS-00048, 1.5.3, 3.4.5

Network Configuration and Firewalls   [ref]group

Most systems must be connected to a network of some sort, and this brings with it the substantial risk of network attack. This section discusses the security impact of decisions about networking which must be made when configuring a system.

This section also discusses firewalls, network access controls, and other network security frameworks, which allow system-level rules to be written that can limit an attackers' ability to connect to your system. These rules can specify that network traffic should be allowed or denied from certain IP addresses, hosts, and networks. The rules can also specify which of the system's network services are available to particular hosts or networks.

contains 25 rules

Kernel Parameters Which Affect Networking   [ref]group

The sysctl utility is used to set parameters which affect the operation of the Linux kernel. Kernel parameters which affect networking and have security implications are described here.

contains 16 rules

Network Parameters for Hosts Only   [ref]group

If the system is not going to be used as a router, then setting certain kernel parameters ensure that the host will not perform routing of network traffic.

contains 3 rules

Disable Kernel Parameter for Sending ICMP Redirects by Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.send_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.send_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.send_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages contain information from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.

Severity:  medium

Identifiers:  CCE-80156-3

References:  RHEL-07-040650, AC-4, CM-7, SC-5, SC-7, 366, 4.1.2, SRG-OS-000480-GPOS-00227, 5.10.1.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for net.ipv4.conf.default.send_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.send_redirects=0

#
# If net.ipv4.conf.default.send_redirects present in /etc/sysctl.conf, change value to "0"
#	else, add "net.ipv4.conf.default.send_redirects = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.send_redirects' "0" 'CCE-80156-3'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.default.send_redirects is set to 0
  sysctl:
    name: net.ipv4.conf.default.send_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_send_redirects
    - medium
    - CCE-80156-3

Disable Kernel Parameter for Sending ICMP Redirects for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.send_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.send_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.send_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages contain information from the system's route table possibly revealing portions of the network topology.
The ability to send ICMP redirects is only appropriate for systems acting as routers.

Severity:  medium

Identifiers:  CCE-80156-3

References:  RHEL-07-040660, AC-4, CM-7, SC-5(1), 366, 4.1.2, SRG-OS-000480-GPOS-00227, 5.10.1.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for net.ipv4.conf.all.send_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.send_redirects=0

#
# If net.ipv4.conf.all.send_redirects present in /etc/sysctl.conf, change value to "0"
#	else, add "net.ipv4.conf.all.send_redirects = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.send_redirects' "0" 'CCE-80156-3'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.all.send_redirects is set to 0
  sysctl:
    name: net.ipv4.conf.all.send_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_send_redirects
    - medium
    - CCE-80156-3

Disable Kernel Parameter for IP Forwarding   [ref]rule

To set the runtime status of the net.ipv4.ip_forward kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.ip_forward=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.ip_forward = 0

Rationale:

Routing protocol daemons are typically used on routers to exchange network topology information with other routers. If this capability is used when not required, system network information may be unnecessarily transmitted across the network.

Severity:  medium

Identifiers:  CCE-80157-1

References:  RHEL-07-040740, CM-7, SC-5, SC-32, 366, 4.1.1, SRG-OS-000480-GPOS-00227, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable


#
# Set runtime for net.ipv4.ip_forward
#
/sbin/sysctl -q -n -w net.ipv4.ip_forward=0

#
# If net.ipv4.ip_forward present in /etc/sysctl.conf, change value to "0"
#	else, add "net.ipv4.ip_forward = 0" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.ip_forward' "0" 'CCE-80157-1'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.ip_forward is set to 0
  sysctl:
    name: net.ipv4.ip_forward
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_ip_forward
    - medium
    - CCE-80157-1

Network Related Kernel Runtime Parameters for Hosts and Routers   [ref]group

Certain kernel parameters should be set for systems which are acting as either hosts or routers to improve the system's ability defend against certain types of IPv4 protocol attacks.

contains 13 rules

Configure Kernel Parameter for Accepting Source-Routed Packets for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.accept_source_route=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.accept_source_route = 0

Rationale:

Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures. This requirement applies only to the forwarding of source-routerd traffic, such as when IPv4 forwarding is enabled and the system is functioning as a router.

Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Identifiers:  CCE-27434-0

References:  RHEL-07-040610, AC-4, CM-7, SC-5, 366, SRG-OS-000480-GPOS-00227, 4.2.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_accept_source_route_value="0"

#
# Set runtime for net.ipv4.conf.all.accept_source_route
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.accept_source_route=$sysctl_net_ipv4_conf_all_accept_source_route_value

#
# If net.ipv4.conf.all.accept_source_route present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.accept_source_route = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.accept_source_route' "$sysctl_net_ipv4_conf_all_accept_source_route_value" 'CCE-27434-0'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.all.accept_source_route is set
  sysctl:
    name: net.ipv4.conf.all.accept_source_route
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_accept_source_route
    - medium
    - CCE-27434-0

Configure Kernel Parameter for Accepting ICMP Redirects for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.accept_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages modify the host's route table and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required.

Severity:  medium

Identifiers:  CCE-80158-9

References:  RHEL-07-040641, CM-6(d), CM-7, SC-5, 366, 1503, 1551, 4.2.2, SRG-OS-000480-GPOS-00227, 5.10.1.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_accept_redirects_value="0"

#
# Set runtime for net.ipv4.conf.all.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.accept_redirects=$sysctl_net_ipv4_conf_all_accept_redirects_value

#
# If net.ipv4.conf.all.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.accept_redirects' "$sysctl_net_ipv4_conf_all_accept_redirects_value" 'CCE-80158-9'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.all.accept_redirects is set
  sysctl:
    name: net.ipv4.conf.all.accept_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_accept_redirects
    - medium
    - CCE-80158-9

Configure Kernel Parameter for Accepting Secure Redirects for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.secure_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.secure_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.secure_redirects = 0

Rationale:

Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Identifiers:  CCE-80159-7

References:  AC-4, CM-7, SC-5, 1503, 1551, 4.2.3, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_secure_redirects_value="0"

#
# Set runtime for net.ipv4.conf.all.secure_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.secure_redirects=$sysctl_net_ipv4_conf_all_secure_redirects_value

#
# If net.ipv4.conf.all.secure_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.secure_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.secure_redirects' "$sysctl_net_ipv4_conf_all_secure_redirects_value" 'CCE-80159-7'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.all.secure_redirects is set
  sysctl:
    name: net.ipv4.conf.all.secure_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_secure_redirects
    - medium
    - CCE-80159-7

Configure Kernel Parameter to Log Martian Packets   [ref]rule

To set the runtime status of the net.ipv4.conf.all.log_martians kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.log_martians=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.log_martians = 1

Rationale:

The presence of "martian" packets (which have impossible addresses) as well as spoofed packets, source-routed packets, and redirects could be a sign of nefarious network activity. Logging these packets enables this activity to be detected.

Severity:  low

Identifiers:  CCE-80160-5

References:  AC-17(7), CM-7, SC-5(3), 126, 4.2.4, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_log_martians_value="1"

#
# Set runtime for net.ipv4.conf.all.log_martians
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.log_martians=$sysctl_net_ipv4_conf_all_log_martians_value

#
# If net.ipv4.conf.all.log_martians present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.log_martians = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.log_martians' "$sysctl_net_ipv4_conf_all_log_martians_value" 'CCE-80160-5'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.all.log_martians is set
  sysctl:
    name: net.ipv4.conf.all.log_martians
    value: 1
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_log_martians
    - low
    - CCE-80160-5

Configure Kernel Parameter to Log Martian Packets By Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.log_martians kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.log_martians=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.log_martians = 1

Rationale:

The presence of "martian" packets (which have impossible addresses) as well as spoofed packets, source-routed packets, and redirects could be a sign of nefarious network activity. Logging these packets enables this activity to be detected.

Severity:  low

Identifiers:  CCE-80161-3

References:  AC-17(7), CM-7, SC-5(3), 126, 4.2.4, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_log_martians_value="1"

#
# Set runtime for net.ipv4.conf.default.log_martians
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.log_martians=$sysctl_net_ipv4_conf_default_log_martians_value

#
# If net.ipv4.conf.default.log_martians present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.log_martians = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.log_martians' "$sysctl_net_ipv4_conf_default_log_martians_value" 'CCE-80161-3'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.default.log_martians is set
  sysctl:
    name: net.ipv4.conf.default.log_martians
    value: 1
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_log_martians
    - low
    - CCE-80161-3

Configure Kernel Parameter for Accepting Source-Routed Packets By Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.accept_source_route kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.accept_source_route=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.accept_source_route = 0

Rationale:

Source-routed packets allow the source of the packet to suggest routers forward the packet along a different path than configured on the router, which can be used to bypass network security measures.
Accepting source-routed packets in the IPv4 protocol has few legitimate uses. It should be disabled unless it is absolutely required, such as when IPv4 forwarding is enabled and the system is legitimately functioning as a router.

Severity:  medium

Identifiers:  CCE-80162-1

References:  RHEL-07-040620, AC-4, CM-7, SC-5, SC-7, 366, 1551, SRG-OS-000480-GPOS-00227, 4.2.1, 5.10.1.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_accept_source_route_value="0"

#
# Set runtime for net.ipv4.conf.default.accept_source_route
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.accept_source_route=$sysctl_net_ipv4_conf_default_accept_source_route_value

#
# If net.ipv4.conf.default.accept_source_route present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.accept_source_route = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.accept_source_route' "$sysctl_net_ipv4_conf_default_accept_source_route_value" 'CCE-80162-1'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.default.accept_source_route is set
  sysctl:
    name: net.ipv4.conf.default.accept_source_route
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_accept_source_route
    - medium
    - CCE-80162-1

Configure Kernel Parameter for Accepting ICMP Redirects By Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.accept_redirects = 0

Rationale:

ICMP redirect messages are used by routers to inform hosts that a more direct route exists for a particular destination. These messages modify the host's route table and are unauthenticated. An illicit ICMP redirect message could result in a man-in-the-middle attack.
This feature of the IPv4 protocol has few legitimate uses. It should be disabled unless absolutely required.

Severity:  medium

Identifiers:  CCE-80163-9

References:  RHEL-07-040640, AC-4, CM-7, SC-5, SC-7, 1551, 4.2.2, SRG-OS-000480-GPOS-00227, 5.10.1.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_accept_redirects_value="0"

#
# Set runtime for net.ipv4.conf.default.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.accept_redirects=$sysctl_net_ipv4_conf_default_accept_redirects_value

#
# If net.ipv4.conf.default.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.accept_redirects' "$sysctl_net_ipv4_conf_default_accept_redirects_value" 'CCE-80163-9'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.default.accept_redirects is set
  sysctl:
    name: net.ipv4.conf.default.accept_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_accept_redirects
    - medium
    - CCE-80163-9

Configure Kernel Parameter for Accepting Secure Redirects By Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.secure_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.secure_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.secure_redirects = 0

Rationale:

Accepting "secure" ICMP redirects (from those gateways listed as default gateways) has few legitimate uses. It should be disabled unless it is absolutely required.

Severity:  medium

Identifiers:  CCE-80164-7

References:  AC-4, CM-7, SC-5, SC-7, 1551, 4.2.3, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_secure_redirects_value="0"

#
# Set runtime for net.ipv4.conf.default.secure_redirects
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.secure_redirects=$sysctl_net_ipv4_conf_default_secure_redirects_value

#
# If net.ipv4.conf.default.secure_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.secure_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.secure_redirects' "$sysctl_net_ipv4_conf_default_secure_redirects_value" 'CCE-80164-7'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.default.secure_redirects is set
  sysctl:
    name: net.ipv4.conf.default.secure_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_secure_redirects
    - medium
    - CCE-80164-7

Configure Kernel Parameter to Ignore ICMP Broadcast Echo Requests   [ref]rule

To set the runtime status of the net.ipv4.icmp_echo_ignore_broadcasts kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.icmp_echo_ignore_broadcasts = 1

Rationale:

Responding to broadcast (ICMP) echoes facilitates network mapping and provides a vector for amplification attacks.
Ignoring ICMP echo requests (pings) sent to broadcast or multicast addresses makes the system slightly more difficult to enumerate on the network.

Severity:  medium

Identifiers:  CCE-80165-4

References:  RHEL-07-040630, AC-4, CM-7, SC-5, 366, SRG-OS-000480-GPOS-00227, 4.2.5, 5.10.1.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value="1"

#
# Set runtime for net.ipv4.icmp_echo_ignore_broadcasts
#
/sbin/sysctl -q -n -w net.ipv4.icmp_echo_ignore_broadcasts=$sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value

#
# If net.ipv4.icmp_echo_ignore_broadcasts present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.icmp_echo_ignore_broadcasts = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.icmp_echo_ignore_broadcasts' "$sysctl_net_ipv4_icmp_echo_ignore_broadcasts_value" 'CCE-80165-4'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.icmp_echo_ignore_broadcasts is set
  sysctl:
    name: net.ipv4.icmp_echo_ignore_broadcasts
    value: 1
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_icmp_echo_ignore_broadcasts
    - medium
    - CCE-80165-4

Configure Kernel Parameter to Ignore Bogus ICMP Error Responses   [ref]rule

To set the runtime status of the net.ipv4.icmp_ignore_bogus_error_responses kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.icmp_ignore_bogus_error_responses=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.icmp_ignore_bogus_error_responses = 1

Rationale:

Ignoring bogus ICMP error responses reduces log size, although some activity would not be logged.

Severity:  low

Identifiers:  CCE-80166-2

References:  CM-7, SC-5, 4.2.6, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value="1"

#
# Set runtime for net.ipv4.icmp_ignore_bogus_error_responses
#
/sbin/sysctl -q -n -w net.ipv4.icmp_ignore_bogus_error_responses=$sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value

#
# If net.ipv4.icmp_ignore_bogus_error_responses present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.icmp_ignore_bogus_error_responses = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.icmp_ignore_bogus_error_responses' "$sysctl_net_ipv4_icmp_ignore_bogus_error_responses_value" 'CCE-80166-2'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.icmp_ignore_bogus_error_responses is set
  sysctl:
    name: net.ipv4.icmp_ignore_bogus_error_responses
    value: 1
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_icmp_ignore_bogus_error_responses
    - low
    - CCE-80166-2

Configure Kernel Parameter to Use TCP Syncookies   [ref]rule

To set the runtime status of the net.ipv4.tcp_syncookies kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.tcp_syncookies=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.tcp_syncookies = 1

Rationale:

A TCP SYN flood attack can cause a denial of service by filling a system's TCP connection table with connections in the SYN_RCVD state. Syncookies can be used to track a connection when a subsequent ACK is received, verifying the initiator is attempting a valid connection and is not a flood source. This feature is activated when a flood condition is detected, and enables the system to continue servicing valid connection requests.

Severity:  medium

Identifiers:  CCE-27495-1

References:  AC-4, SC-5(1)(2), SC-5(2), SC-5(3), 366, SRG-OS-000480-GPOS-00227, 4.2.8, 5.10.1.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_tcp_syncookies_value="1"

#
# Set runtime for net.ipv4.tcp_syncookies
#
/sbin/sysctl -q -n -w net.ipv4.tcp_syncookies=$sysctl_net_ipv4_tcp_syncookies_value

#
# If net.ipv4.tcp_syncookies present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.tcp_syncookies = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.tcp_syncookies' "$sysctl_net_ipv4_tcp_syncookies_value" 'CCE-27495-1'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.tcp_syncookies is set
  sysctl:
    name: net.ipv4.tcp_syncookies
    value: 1
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_tcp_syncookies
    - medium
    - CCE-27495-1

Configure Kernel Parameter to Use Reverse Path Filtering for All Interfaces   [ref]rule

To set the runtime status of the net.ipv4.conf.all.rp_filter kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.all.rp_filter=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.all.rp_filter = 1

Rationale:

Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks.

Severity:  medium

Identifiers:  CCE-80167-0

References:  AC-4, SC-5, SC-7, 1551, 4.2.7, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_all_rp_filter_value="1"

#
# Set runtime for net.ipv4.conf.all.rp_filter
#
/sbin/sysctl -q -n -w net.ipv4.conf.all.rp_filter=$sysctl_net_ipv4_conf_all_rp_filter_value

#
# If net.ipv4.conf.all.rp_filter present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.all.rp_filter = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.all.rp_filter' "$sysctl_net_ipv4_conf_all_rp_filter_value" 'CCE-80167-0'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.all.rp_filter is set
  sysctl:
    name: net.ipv4.conf.all.rp_filter
    value: 1
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_all_rp_filter
    - medium
    - CCE-80167-0

Configure Kernel Parameter to Use Reverse Path Filtering by Default   [ref]rule

To set the runtime status of the net.ipv4.conf.default.rp_filter kernel parameter, run the following command:

$ sudo sysctl -w net.ipv4.conf.default.rp_filter=1
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv4.conf.default.rp_filter = 1

Rationale:

Enabling reverse path filtering drops packets with source addresses that should not have been able to be received on the interface they were received on. It should not be used on systems which are routers for complicated networks, but is helpful for end hosts and routers serving small networks.

Severity:  medium

Identifiers:  CCE-80168-8

References:  AC-4, SC-5, SC-7, 4.2.7, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv4_conf_default_rp_filter_value="1"

#
# Set runtime for net.ipv4.conf.default.rp_filter
#
/sbin/sysctl -q -n -w net.ipv4.conf.default.rp_filter=$sysctl_net_ipv4_conf_default_rp_filter_value

#
# If net.ipv4.conf.default.rp_filter present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv4.conf.default.rp_filter = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv4.conf.default.rp_filter' "$sysctl_net_ipv4_conf_default_rp_filter_value" 'CCE-80168-8'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv4.conf.default.rp_filter is set
  sysctl:
    name: net.ipv4.conf.default.rp_filter
    value: 1
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv4_conf_default_rp_filter
    - medium
    - CCE-80168-8

Wireless Networking   [ref]group

Wireless networking, such as 802.11 (WiFi) and Bluetooth, can present a security risk to sensitive or classified systems and networks. Wireless networking hardware is much more likely to be included in laptop or portable systems than in desktops or servers.

Removal of hardware provides the greatest assurance that the wireless capability remains disabled. Acquisition policies often include provisions to prevent the purchase of equipment that will be used in sensitive spaces and includes wireless capabilities. If it is impractical to remove the wireless hardware, and policy permits the device to enter sensitive spaces as long as wireless is disabled, efforts should instead focus on disabling wireless capability via software.

contains 1 rule

Disable Wireless Through Software Configuration   [ref]group

If it is impossible to remove the wireless hardware from the device in question, disable as much of it as possible through software. The following methods can disable software support for wireless networking, but note that these methods do not prevent malicious software or careless users from re-activating the devices.

contains 1 rule

Deactivate Wireless Network Interfaces   [ref]rule

Deactivating wireless network interfaces should prevent normal usage of the wireless capability.

First, identify the interfaces available with the command:

$ ifconfig -a
Additionally, the following command may be used to determine whether wireless support is included for a particular interface, though this may not always be a clear indicator:
$ iwconfig
After identifying any wireless interfaces (which may have names like wlan0, ath0, wifi0, em1 or eth0), deactivate the interface with the command:
$ sudo ifdown interface
These changes will only last until the next reboot. To disable the interface for future boots, remove the appropriate interface file from /etc/sysconfig/network-scripts:
$ sudo rm /etc/sysconfig/network-scripts/ifcfg-interface

Rationale:

Wireless networking allows attackers within physical proximity to launch network-based attacks against systems, including those against local LAN protocols which were not designed with security in mind.

Severity:  low

Identifiers:  CCE-27358-1

References:  AC-17(8), AC-18(a), AC-18(d), AC-18(3), CM-7, 85, 4.3.1, 3.1.16

IPv6   [ref]group

The system includes support for Internet Protocol version 6. A major and often-mentioned improvement over IPv4 is its enormous increase in the number of available addresses. Another important feature is its support for automatic configuration of many network settings.

contains 5 rules

Disable Support for IPv6 Unless Needed   [ref]group

Despite configuration that suggests support for IPv6 has been disabled, link-local IPv6 address auto-configuration occurs even when only an IPv4 address is assigned. The only way to effectively prevent execution of the IPv6 networking stack is to instruct the system not to activate the IPv6 kernel module.

contains 1 rule

Disable IPv6 Networking Support Automatic Loading   [ref]rule

To disable support for (ipv6) add the following line to /etc/sysctl.d/ipv6.conf (or another file in /etc/sysctl.d):

net.ipv6.conf.all.disable_ipv6 = 1
This disables IPv6 on all network interfaces as other services and system functionality require the IPv6 stack loaded to work.

Rationale:

Any unnecessary network stacks - including IPv6 - should be disabled, to reduce the vulnerability to exploitation.

Severity:  medium

Identifiers:  CCE-80175-3

References:  CM-7, 1551, 4.4.2, 3.1.20

Configure IPv6 Settings if Necessary   [ref]group

A major feature of IPv6 is the extent to which systems implementing it can automatically configure their networking devices using information from the network. From a security perspective, manually configuring important configuration information is preferable to accepting it from the network in an unauthenticated fashion.

contains 4 rules

Disable Automatic Configuration   [ref]group

Disable the system's acceptance of router advertisements and redirects by adding or correcting the following line in /etc/sysconfig/network (note that this does not disable sending router solicitations):

IPV6_AUTOCONF=no

contains 4 rules

Configure Accepting IPv6 Router Advertisements   [ref]rule

To set the runtime status of the net.ipv6.conf.all.accept_ra kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.all.accept_ra=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv6.conf.all.accept_ra = 0

Rationale:

An illicit router advertisement message could result in a man-in-the-middle attack.

Severity:  low

Identifiers:  CCE-80180-3

References:  CM-7, 4.4.1.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv6_conf_all_accept_ra_value="0"

#
# Set runtime for net.ipv6.conf.all.accept_ra
#
/sbin/sysctl -q -n -w net.ipv6.conf.all.accept_ra=$sysctl_net_ipv6_conf_all_accept_ra_value

#
# If net.ipv6.conf.all.accept_ra present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv6.conf.all.accept_ra = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv6.conf.all.accept_ra' "$sysctl_net_ipv6_conf_all_accept_ra_value" 'CCE-80180-3'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv6.conf.all.accept_ra is set
  sysctl:
    name: net.ipv6.conf.all.accept_ra
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv6_conf_all_accept_ra
    - low
    - CCE-80180-3

Configure Accepting IPv6 Router Advertisements   [ref]rule

To set the runtime status of the net.ipv6.conf.default.accept_ra kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.default.accept_ra=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv6.conf.default.accept_ra = 0

Rationale:

An illicit router advertisement message could result in a man-in-the-middle attack.

Severity:  low

Identifiers:  CCE-80181-1

References:  CM-7, 4.4.1.1, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv6_conf_default_accept_ra_value="0"

#
# Set runtime for net.ipv6.conf.default.accept_ra
#
/sbin/sysctl -q -n -w net.ipv6.conf.default.accept_ra=$sysctl_net_ipv6_conf_default_accept_ra_value

#
# If net.ipv6.conf.default.accept_ra present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv6.conf.default.accept_ra = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv6.conf.default.accept_ra' "$sysctl_net_ipv6_conf_default_accept_ra_value" 'CCE-80181-1'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv6.conf.default.accept_ra is set
  sysctl:
    name: net.ipv6.conf.default.accept_ra
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv6_conf_default_accept_ra
    - low
    - CCE-80181-1

Configure Accepting IPv6 Redirects By Default   [ref]rule

To set the runtime status of the net.ipv6.conf.all.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.all.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv6.conf.all.accept_redirects = 0

Rationale:

An illicit ICMP redirect message could result in a man-in-the-middle attack.

Severity:  medium

Identifiers:  CCE-80182-9

References:  CM-7, 1551, 4.4.1.2, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv6_conf_all_accept_redirects_value="0"

#
# Set runtime for net.ipv6.conf.all.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv6.conf.all.accept_redirects=$sysctl_net_ipv6_conf_all_accept_redirects_value

#
# If net.ipv6.conf.all.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv6.conf.all.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv6.conf.all.accept_redirects' "$sysctl_net_ipv6_conf_all_accept_redirects_value" 'CCE-80182-9'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv6.conf.all.accept_redirects is set
  sysctl:
    name: net.ipv6.conf.all.accept_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv6_conf_all_accept_redirects
    - medium
    - CCE-80182-9

Configure Accepting IPv6 Redirects By Default   [ref]rule

To set the runtime status of the net.ipv6.conf.default.accept_redirects kernel parameter, run the following command:

$ sudo sysctl -w net.ipv6.conf.default.accept_redirects=0
If this is not the system's default value, add the following line to /etc/sysctl.conf:
net.ipv6.conf.default.accept_redirects = 0

Rationale:

An illicit ICMP redirect message could result in a man-in-the-middle attack.

Severity:  medium

Identifiers:  CCE-80183-7

References:  CM-7, 1551, 4.4.1.2, 3.1.20

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable

sysctl_net_ipv6_conf_default_accept_redirects_value="0"

#
# Set runtime for net.ipv6.conf.default.accept_redirects
#
/sbin/sysctl -q -n -w net.ipv6.conf.default.accept_redirects=$sysctl_net_ipv6_conf_default_accept_redirects_value

#
# If net.ipv6.conf.default.accept_redirects present in /etc/sysctl.conf, change value to appropriate value
#	else, add "net.ipv6.conf.default.accept_redirects = value" to /etc/sysctl.conf
#
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

replace_or_append '/etc/sysctl.conf' '^net.ipv6.conf.default.accept_redirects' "$sysctl_net_ipv6_conf_default_accept_redirects_value" 'CCE-80183-7'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: Ensure sysctl net.ipv6.conf.default.accept_redirects is set
  sysctl:
    name: net.ipv6.conf.default.accept_redirects
    value: 0
    state: present
    reload: yes
  tags:
    - sysctl_net_ipv6_conf_default_accept_redirects
    - medium
    - CCE-80183-7

firewalld   [ref]group

The dynamic firewall daemon firewalld provides a dynamically managed firewall with support for network “zones” to assign a level of trust to a network and its associated connections and interfaces. It has support for IPv4 and IPv6 firewall settings. It supports Ethernet bridges and has a separation of runtime and permanent configuration options. It also has an interface for services or applications to add firewall rules directly.
A graphical configuration tool, firewall-config, is used to configure firewalld, which in turn uses iptables tool to communicate with Netfilter in the kernel which implements packet filtering.
The firewall service provided by firewalld is dynamic rather than static because changes to the configuration can be made at anytime and are immediately implemented. There is no need to save or apply the changes. No unintended disruption of existing network connections occurs as no part of the firewall has to be reloaded.

contains 1 rule

Inspect and Activate Default firewalld Rules   [ref]group

Firewalls can be used to separate networks into different zones based on the level of trust the user has decided to place on the devices and traffic within that network. NetworkManager informs firewalld to which zone an interface belongs. An interface's assigned zone can be changed by NetworkManager or via the firewall-config tool.
The zone settings in /etc/firewalld/ are a range of preset settings which can be quickly applied to a network interface. These are the zones provided by firewalld sorted according to the default trust level of the zones from untrusted to trusted:

  • drop

    Any incoming network packets are dropped, there is no reply. Only outgoing network connections are possible.

  • block

    Any incoming network connections are rejected with an icmp-host-prohibited message for IPv4 and icmp6-adm-prohibited for IPv6. Only network connections initiated from within the system are possible.

  • public

    For use in public areas. You do not trust the other computers on the network to not harm your computer. Only selected incoming connections are accepted.

  • external

    For use on external networks with masquerading enabled especially for routers. You do not trust the other computers on the network to not harm your computer. Only selected incoming connections are accepted.

  • dmz

    For computers in your demilitarized zone that are publicly-accessible with limited access to your internal network. Only selected incoming connections are accepted.

  • work

    For use in work areas. You mostly trust the other computers on networks to not harm your computer. Only selected incoming connections are accepted.

  • home

    For use in home areas. You mostly trust the other computers on networks to not harm your computer. Only selected incoming connections are accepted.

  • internal

    For use on internal networks. You mostly trust the other computers on the networks to not harm your computer. Only selected incoming connections are accepted.

  • trusted

    All network connections are accepted.


It is possible to designate one of these zones to be the default zone. When interface connections are added to NetworkManager, they are assigned to the default zone. On installation, the default zone in firewalld is set to be the public zone.
To find out all the settings of a zone, for example the public zone, enter the following command as root:
# firewall-cmd --zone=public --list-all
Example output of this command might look like the following:
# firewall-cmd --zone=public --list-all
public
  interfaces:
  services: mdns dhcpv6-client ssh
  ports:
  forward-ports:
  icmp-blocks: source-quench
To view the network zones currently active, enter the following command as root:
# firewall-cmd --get-service
The following listing displays the result of this command on common Red Hat Enterprise Linux 7 Server system:
# firewall-cmd --get-service
amanda-client bacula bacula-client dhcp dhcpv6 dhcpv6-client dns ftp
high-availability http https imaps ipp ipp-client ipsec kerberos kpasswd
ldap ldaps libvirt libvirt-tls mdns mountd ms-wbt mysql nfs ntp openvpn
pmcd pmproxy pmwebapi pmwebapis pop3s postgresql proxy-dhcp radius rpc-bind
samba samba-client smtp ssh telnet tftp tftp-client transmission-client
vnc-server wbem-https
Finally to view the network zones that will be active after the next firewalld service reload, enter the following command as root:
# firewall-cmd --get-service --permanent

contains 1 rule

Verify firewalld Enabled   [ref]rule

The firewalld service can be enabled with the following command:

$ sudo systemctl enable firewalld.service

Rationale:

Access control methods provide the ability to enhance system security posture by restricting services and known good IP addresses and address ranges. This prevents connections from unknown hosts and protocols.

Severity:  medium

Identifiers:  CCE-27361-5

References:  RHEL-07-040520, CM-6(b), 366, 4.7, SRG-OS-000480-GPOS-00227, 3.1.3, 3.4.7

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if ! [ "$service_operation" != 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command enable firewalld
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: "Enable service firewalld"
  service:
    name="{{item}}"
    enabled="yes"
    state="started"
  with_items:
    - firewalld
  tags:
    - service_firewalld_enabled
    - medium
    - CCE-27361-5

Uncommon Network Protocols   [ref]group

The system includes support for several network protocols which are not commonly used. Although security vulnerabilities in kernel networking code are not frequently discovered, the consequences can be dramatic. Ensuring uncommon network protocols are disabled reduces the system's risk to attacks targeted at its implementation of those protocols.

Warning:  Although these protocols are not commonly used, avoid disruption in your network environment by ensuring they are not needed prior to disabling them.
contains 2 rules

Disable DCCP Support   [ref]rule

The Datagram Congestion Control Protocol (DCCP) is a relatively new transport layer protocol, designed to support streaming media and telephony. To configure the system to prevent the dccp kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install dccp /bin/true

Rationale:

Disabling DCCP protects the system against exploitation of any flaws in its implementation.

Severity:  medium

Identifiers:  CCE-26828-4

References:  CM-7, http://iase.disa.mil/stigs/cci/Pages/index.aspx, 4.6.1, 5.10.1, 3.4.6

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install dccp" /etc/modprobe.d/dccp.conf ; then
        sed -i 's/^install dccp.*/install dccp /bin/true/g' /etc/modprobe.d/dccp.conf
else
        echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/dccp.conf
        echo "install dccp /bin/true" >> /etc/modprobe.d/dccp.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: "Ensure kernel module 'dccp' is disabled"
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - dccp
  tags:
    - kernel_module_dccp_disabled
    - medium
    - CCE-26828-4

Disable SCTP Support   [ref]rule

The Stream Control Transmission Protocol (SCTP) is a transport layer protocol, designed to support the idea of message-oriented communication, with several streams of messages within one connection. To configure the system to prevent the sctp kernel module from being loaded, add the following line to a file in the directory /etc/modprobe.d:

install sctp /bin/true

Rationale:

Disabling SCTP protects the system against exploitation of any flaws in its implementation.

Severity:  medium

Identifiers:  CCE-27106-4

References:  CM-7, http://iase.disa.mil/stigs/cci/Pages/index.aspx, 4.6.2, 5.10.1, 3.4.6

Remediation Shell script:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
if grep --silent "^install sctp" /etc/modprobe.d/sctp.conf ; then
        sed -i 's/^install sctp.*/install sctp /bin/true/g' /etc/modprobe.d/sctp.conf
else
        echo -e "\n# Disable per security requirements" >> /etc/modprobe.d/sctp.conf
        echo "install sctp /bin/true" >> /etc/modprobe.d/sctp.conf
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Reboot:true
Strategy:disable
- name: "Ensure kernel module 'sctp' is disabled"
  lineinfile:
    create=yes
    dest="/etc/modprobe.d/{{item}}.conf"
    regexp="{{item}}"
    line="install {{item}} /bin/true"
  with_items:
    - sctp
  tags:
    - kernel_module_sctp_disabled
    - medium
    - CCE-27106-4

Configure Syslog   [ref]group

The syslog service has been the default Unix logging mechanism for many years. It has a number of downsides, including inconsistent log format, lack of authentication for received messages, and lack of authentication, encryption, or reliable transport for messages sent over a network. However, due to its long history, syslog is a de facto standard which is supported by almost all Unix applications.

In Red Hat Enterprise Linux 7, rsyslog has replaced ksyslogd as the syslog daemon of choice, and it includes some additional security features such as reliable, connection-oriented (i.e. TCP) transmission of logs, the option to log to database formats, and the encryption of log data en route to a central logging server. This section discusses how to configure rsyslog for best effect, and how to use tools provided with the system to maintain and monitor logs.

contains 6 rules

Ensure Proper Configuration of Log Files   [ref]group

The file /etc/rsyslog.conf controls where log message are written. These are controlled by lines called rules, which consist of a selector and an action. These rules are often customized depending on the role of the system, the requirements of the environment, and whatever may enable the administrator to most effectively make use of log data. The default rules in Red Hat Enterprise Linux 7 are:

*.info;mail.none;authpriv.none;cron.none                /var/log/messages
authpriv.*                                              /var/log/secure
mail.*                                                  -/var/log/maillog
cron.*                                                  /var/log/cron
*.emerg                                                 *
uucp,news.crit                                          /var/log/spooler
local7.*                                                /var/log/boot.log
See the man page rsyslog.conf(5) for more information. Note that the rsyslog daemon can be configured to use a timestamp format that some log processing programs may not understand. If this occurs, edit the file /etc/rsyslog.conf and add or edit the following line:
$ ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

contains 1 rule

Ensure System Log Files Have Correct Permissions   [ref]rule

The file permissions for all log files written by rsyslog should be set to 600, or more restrictive. These log files are determined by the second part of each Rule line in /etc/rsyslog.conf and typically all appear in /var/log. For each log file LOGFILE referenced in /etc/rsyslog.conf, run the following command to inspect the file's permissions:

$ ls -l LOGFILE
If the permissions are not 600 or more restrictive, run the following command to correct this:
$ sudo chmod 0600 LOGFILE

Rationale:

Log files can contain valuable information regarding system configuration. If the system log files are not protected unauthorized users could change the logged data, eliminating their forensic value.

Severity:  medium

Identifiers:  CCE-80191-0

References:  SI-11, 1314, Req-10.5.1, Req-10.5.2, 5.1.4

Remediation Shell script:   (show)


# List of log file paths to be inspected for correct permissions
# * Primarily inspect log file paths listed in /etc/rsyslog.conf
RSYSLOG_ETC_CONFIG="/etc/rsyslog.conf"
# * And also the log file paths listed after rsyslog's $IncludeConfig directive
#   (store the result into array for the case there's shell glob used as value of IncludeConfig)
RSYSLOG_INCLUDE_CONFIG=($(grep -e "\$IncludeConfig[[:space:]]\+[^[:space:];]\+" /etc/rsyslog.conf | cut -d ' ' -f 2))
# Declare an array to hold the final list of different log file paths
declare -a LOG_FILE_PATHS

# Browse each file selected above as containing paths of log files
# ('/etc/rsyslog.conf' and '/etc/rsyslog.d/*.conf' in the default configuration)
for LOG_FILE in "${RSYSLOG_ETC_CONFIG}" "${RSYSLOG_INCLUDE_CONFIG[@]}"
do
	# From each of these files extract just particular log file path(s), thus:
	# * Ignore lines starting with space (' '), comment ('#"), or variable syntax ('$') characters,
	# * Ignore empty lines,
	# * From the remaining valid rows select only fields constituting a log file path
	# Text file column is understood to represent a log file path if and only if all of the following are met:
	# * it contains at least one slash '/' character,
	# * it doesn't contain space (' '), colon (':'), and semicolon (';') characters
	# Search log file for path(s) only in case it exists!
	if [[ -f "${LOG_FILE}" ]]
	then
		MATCHED_ITEMS=$(sed -e "/^[[:space:]|#|$]/d ; s/[^\/]*[[:space:]]*\([^:;[:space:]]*\)/\1/g ; /^$/d" "${LOG_FILE}")
		# Since above sed command might return more than one item (delimited by newline), split the particular
		# matches entries into new array specific for this log file
		readarray -t ARRAY_FOR_LOG_FILE <<< "$MATCHED_ITEMS"
		# Concatenate the two arrays - previous content of $LOG_FILE_PATHS array with
		# items from newly created array for this log file
		LOG_FILE_PATHS=("${LOG_FILE_PATHS[@]}" "${ARRAY_FOR_LOG_FILE[@]}")
		# Delete the temporary array
		unset ARRAY_FOR_LOG_FILE
	fi
done

for PATH in "${LOG_FILE_PATHS[@]}"
do
	# Sanity check - if particular $PATH is empty string, skip it from further processing
	if [ -z "$PATH" ]
	then
		continue
	fi

	# In RHEL 7 we have systemd, so it doesn't make sense to patch/change /etc/rc.d/rc.local,
	# as per BZ https://bugzilla.redhat.com/show_bug.cgi?id=1404381

	# Also for each log file check if its permissions differ from 600. If so, correct them
	if [ "$(/usr/bin/stat -c %a "$PATH")" -ne 600 ]
	then
		/bin/chmod 600 "$PATH"
	fi
done

Rsyslog Logs Sent To Remote Host   [ref]group

If system logs are to be useful in detecting malicious activities, it is necessary to send logs to a remote server. An intruder who has compromised the root account on a system may delete the log entries which indicate that the system was attacked before they are seen by an administrator.

However, it is recommended that logs be stored on the local host in addition to being sent to the loghost, especially if rsyslog has been configured to use the UDP protocol to send messages over a network. UDP does not guarantee reliable delivery, and moderately busy sites will lose log messages occasionally, especially in periods of high traffic which may be the result of an attack. In addition, remote rsyslog messages are not authenticated in any way by default, so it is easy for an attacker to introduce spurious messages to the central log server. Also, some problems cause loss of network connectivity, which will prevent the sending of messages to the central server. For all of these reasons, it is better to store log messages both centrally and on each host, so that they can be correlated if necessary.

contains 1 rule

Ensure Logs Sent To Remote Host   [ref]rule

To configure rsyslog to send logs to a remote log server, open /etc/rsyslog.conf and read and understand the last section of the file, which describes the multiple directives necessary to activate remote logging. Along with these other directives, the system can be configured to forward its logs to a particular log server by adding or correcting one of the following lines, substituting loghost.example.com appropriately. The choice of protocol depends on the environment of the system; although TCP and RELP provide more reliable message delivery, they may not be supported in all environments.
To use UDP for log message delivery:

*.* @loghost.example.com

To use TCP for log message delivery:
*.* @@loghost.example.com

To use RELP for log message delivery:
*.* :omrelp:loghost.example.com

Rationale:

A log server (loghost) receives syslog messages from one or more systems. This data can be used as an additional log source in the event a system is compromised and its local logs are suspect. Forwarding log messages to a remote loghost also provides system administrators with a centralized place to view the status of multiple hosts within the enterprise.

Severity:  low

Identifiers:  CCE-27343-3

References:  RHEL-07-031000, AU-3(2), AU-4(1), AU-9, 366, 1348, 136, 1851, 5.1.5, SRG-OS-000480-GPOS-00227

Remediation Shell script:   (show)


rsyslog_remote_loghost_address="(N/A)"

if [ "$rsyslog_remote_loghost_address" != "NULL" ]
then
# Function to replace configuration setting in config file or add the configuration setting if
# it does not exist.
#
# Expects four arguments:
#
# config_file:		Configuration file that will be modified
# key:			Configuration option to change
# value:		Value of the configuration option to change
# cce:			The CCE identifier or '@CCENUM@' if no CCE identifier exists
#
# Optional arugments:
#
# format:		Optional argument to specify the format of how key/value should be
# 			modified/appended in the configuration file. The default is key = value.
#
# Example Call(s):
#
#     With default format of 'key = value':
#     replace_or_append '/etc/sysctl.conf' '^kernel.randomize_va_space' '2' '@CCENUM@'
#
#     With custom key/value format:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' 'disabled' '@CCENUM@' '%s=%s'
#
#     With a variable:
#     replace_or_append '/etc/sysconfig/selinux' '^SELINUX=' $var_selinux_state '@CCENUM@' '%s=%s'
#
function replace_or_append {
  local config_file=$1
  local key=$2
  local value=$3
  local cce=$4
  local format=$5

  # Check sanity of the input
  if [ $# -lt "3" ]
  then
        echo "Usage: replace_or_append 'config_file_location' 'key_to_search' 'new_value'"
        echo
        echo "If symlinks need to be taken into account, add yes/no to the last argument"
        echo "to allow to 'follow_symlinks'."
        echo "Aborting."
        exit 1
  fi

  # Test if the config_file is a symbolic link. If so, use --follow-symlinks with sed.
  # Otherwise, regular sed command will do.
  if test -L $config_file; then
    sed_command="sed -i --follow-symlinks"
  else
    sed_command="sed -i"
  fi

  # Test that the cce arg is not empty or does not equal @CCENUM@.
  # If @CCENUM@ exists, it means that there is no CCE assigned.
  if ! [ "x$cce" = x ] && [ "$cce" != '@CCENUM@' ]; then
    cce="CCE-${cce}"
  else
    cce="CCE"
  fi

  # Strip any search characters in the key arg so that the key can be replaced without
  # adding any search characters to the config file.
  stripped_key=$(sed "s/[\^=\$,;+]*//g" <<< $key)

  # If there is no print format specified in the last arg, use the default format.
  if ! [ "x$format" = x ] ; then
    printf -v formatted_output "$format" "$stripped_key" "$value"
  else
    formatted_output="$stripped_key = $value"
  fi

  # If the key exists, change it. Otherwise, add it to the config_file.
  if `grep -qi $key $config_file` ; then
    eval $sed_command "s/$key.*/$formatted_output/g" $config_file
  else
    # \n is precaution for case where file ends without trailing newline
    echo -e "\n# Per $cce: Set $formatted_output in $config_file" >> $config_file
    echo -e "$formatted_output" >> $config_file
  fi

}

    replace_or_append '/etc/rsyslog.conf' '^\*\.\*' "@@$rsyslog_remote_loghost_address" 'CCE-27343-3' '%s %s'
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict

- name: "Set rsyslog remote loghost to (N/A)"
  lineinfile:
    dest: /etc/rsyslog.conf
    regexp: "^\\*\\.\\*"
    line: "*.* @@(N/A)"
  when: "'(N/A)' != 'NULL'"
  tags:
    - rsyslog_remote_loghost
    - low
    - CCE-27343-3

Configure rsyslogd to Accept Remote Messages If Acting as a Log Server   [ref]group

By default, rsyslog does not listen over the network for log messages. If needed, modules can be enabled to allow the rsyslog daemon to receive messages from other systems and for the system thus to act as a log server. If the system is not a log server, then lines concerning these modules should remain commented out.

contains 2 rules

Enable rsyslog to Accept Messages via TCP, if Acting As Log Server   [ref]rule

The rsyslog daemon should not accept remote messages unless the system acts as a log server. If the system needs to act as a central log server, add the following lines to /etc/rsyslog.conf to enable reception of messages over TCP:

$ModLoad imtcp
$InputTCPServerRun 514

Rationale:

If the system needs to act as a log server, this ensures that it can receive messages over a reliable TCP connection.

Severity:  low

Identifiers:  CCE-80193-6

References:  AU-9, 5.1.6

Enable rsyslog to Accept Messages via UDP, if Acting As Log Server   [ref]rule

The rsyslog daemon should not accept remote messages unless the system acts as a log server. If the system needs to act as a central log server, add the following lines to /etc/rsyslog.conf to enable reception of messages over UDP:

$ModLoad imudp
$UDPServerRun 514

Rationale:

Many devices, such as switches, routers, and other Unix-like systems, may only support the traditional syslog transmission over UDP. If the system must act as a log server, this enables it to receive their messages as well.

Severity:  low

Identifiers:  CCE-80194-4

References:  AU-9, 5.1.6

Ensure rsyslog is Installed   [ref]rule

Rsyslog is installed by default. The rsyslog package can be installed with the following command:

$ sudo yum install rsyslog

Rationale:

The rsyslog package provides the rsyslog daemon, which provides system logging services.

Severity:  medium

Identifiers:  CCE-80187-8

References:  AU-9(2), 1311, 1312, 5.1.1

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable
# Function to install or uninstall packages on RHEL and Fedora systems.
#
# Example Call(s):
#
#     package_command install aide
#     package_command remove telnet-server
#
function package_command {

# Load function arguments into local variables
local package_operation=$1
local package=$2

# Check sanity of the input
if [ $# -ne "2" ]
then
  echo "Usage: package_command 'install/uninstall' 'rpm_package_name"
  echo "Aborting."
  exit 1
fi

# If dnf is installed, use dnf; otherwise, use yum
if [ -f "/usr/bin/dnf" ] ; then
  install_util="/usr/bin/dnf"
else
  install_util="/usr/bin/yum"
fi

if [ "$package_operation" != 'remove' ] ; then
  # If the rpm is not installed, install the rpm
  if ! /bin/rpm -q --quiet $package; then
    $install_util -y $package_operation $package
  fi
else
  # If the rpm is installed, uninstall the rpm
  if /bin/rpm -q --quiet $package; then
    $install_util -y $package_operation $package
  fi
fi

}

package_command install rsyslog
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: "Ensure rsyslog is installed"
  package:
    name="{{item}}"
    state=present
  with_items:
    - rsyslog
  tags:
    - package_rsyslog_installed
    - medium
    - CCE-80187-8

Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
include install_rsyslog

class install_rsyslog {
  package { 'rsyslog':
    ensure => 'installed',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable

package --add=rsyslog

Enable rsyslog Service   [ref]rule

The rsyslog service provides syslog-style logging by default on Red Hat Enterprise Linux 7. The rsyslog service can be enabled with the following command:

$ sudo systemctl enable rsyslog.service

Rationale:

The rsyslog service must be running in order to provide logging services, which are essential to system administration.

Severity:  medium

Identifiers:  CCE-80188-6

References:  AU-4(1), AU-12, 1311, 1312, 1557, 1851, 5.1.2

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable
# Function to enable/disable and start/stop services on RHEL and Fedora systems.
#
# Example Call(s):
#
#     service_command enable bluetooth
#     service_command disable bluetooth.service
#
#     Using xinetd:
#     service_command disable rsh.socket xinetd=rsh
#
function service_command {

# Load function arguments into local variables
local service_state=$1
local service=$2
local xinetd=$(echo $3 | cut -d'=' -f2)

# Check sanity of the input
if [ $# -lt "2" ]
then
  echo "Usage: service_command 'enable/disable' 'service_name.service'"
  echo
  echo "To enable or disable xinetd services add \'xinetd=service_name\'"
  echo "as the last argument"  
  echo "Aborting."
  exit 1
fi

# If systemctl is installed, use systemctl command; otherwise, use the service/chkconfig commands
if [ -f "/usr/bin/systemctl" ] ; then
  service_util="/usr/bin/systemctl"
else
  service_util="/sbin/service"
  chkconfig_util="/sbin/chkconfig"
fi

# If disable is not specified in arg1, set variables to enable services.
# Otherwise, variables are to be set to disable services.
if [ "$service_state" != 'disable' ] ; then
  service_state="enable"
  service_operation="start"
  chkconfig_state="on"
else
  service_state="disable"
  service_operation="stop"
  chkconfig_state="off"
fi

# If chkconfig_util is not empty, use chkconfig/service commands.
if ! [ "x$chkconfig_util" = x ] ; then
  $service_util $service $service_operation
  $chkconfig_util --level 0123456 $service $chkconfig_state
else
  $service_util $service_operation $service
  $service_util $service_state $service
fi

# Test if local variable xinetd is empty using non-bashism.
# If empty, then xinetd is not being used.
if ! [ "x$xinetd" = x ] ; then
  grep -qi disable /etc/xinetd.d/$xinetd && \

  if ! [ "$service_operation" != 'disable' ] ; then
    sed -i "s/disable.*/disable         = no/gI" /etc/xinetd.d/$xinetd
  else
    sed -i "s/disable.*/disable         = yes/gI" /etc/xinetd.d/$xinetd
  fi
fi

}

service_command enable rsyslog
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: "Enable service rsyslog"
  service:
    name="{{item}}"
    enabled="yes"
    state="started"
  with_items:
    - rsyslog
  tags:
    - service_rsyslog_enabled
    - medium
    - CCE-80188-6

System Accounting with auditd   [ref]group

The audit service provides substantial capabilities for recording system activities. By default, the service audits about SELinux AVC denials and certain types of security-relevant events such as system logins, account modifications, and authentication events performed by programs such as sudo. Under its default configuration, auditd has modest disk space requirements, and should not noticeably impact system performance.

NOTE: The Linux Audit daemon auditd can be configured to use the augenrules program to read audit rules files (*.rules) located in /etc/audit/rules.d location and compile them to create the resulting form of the /etc/audit/audit.rules configuration file during the daemon startup (default configuration). Alternatively, the auditd daemon can use the auditctl utility to read audit rules from the /etc/audit/audit.rules configuration file during daemon startup, and load them into the kernel. The expected behavior is configured via the appropriate ExecStartPost directive setting in the /usr/lib/systemd/system/auditd.service configuration file. To instruct the auditd daemon to use the augenrules program to read audit rules (default configuration), use the following setting:

ExecStartPost=-/sbin/augenrules --load
in the /usr/lib/systemd/system/auditd.service configuration file. In order to instruct the auditd daemon to use the auditctl utility to read audit rules, use the following setting:
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules
in the /usr/lib/systemd/system/auditd.service configuration file. Refer to [Service] section of the /usr/lib/systemd/system/auditd.service configuration file for further details.

Government networks often have substantial auditing requirements and auditd can be configured to meet these requirements. Examining some example audit records demonstrates how the Linux audit system satisfies common requirements. The following example from Fedora Documentation available at https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/sect-Security-Enhanced_Linux-Troubleshooting-Fixing_Problems.html#sect-Security-Enhanced_Linux-Fixing_Problems-Raw_Audit_Messages shows the substantial amount of information captured in a two typical "raw" audit messages, followed by a breakdown of the most important fields. In this example the message is SELinux-related and reports an AVC denial (and the associated system call) that occurred when the Apache HTTP Server attempted to access the /var/www/html/file1 file (labeled with the samba_share_t type):
type=AVC msg=audit(1226874073.147:96): avc:  denied  { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
  • msg=audit(1226874073.147:96)
    • The number in parentheses is the unformatted time stamp (Epoch time) for the event, which can be converted to standard time by using the date command.
  • { getattr }
    • The item in braces indicates the permission that was denied. getattr indicates the source process was trying to read the target file's status information. This occurs before reading files. This action is denied due to the file being accessed having the wrong label. Commonly seen permissions include getattr, read, and write.
  • comm="httpd"
    • The executable that launched the process. The full path of the executable is found in the exe= section of the system call (SYSCALL) message, which in this case, is exe="/usr/sbin/httpd".
  • path="/var/www/html/file1"
    • The path to the object (target) the process attempted to access.
  • scontext="unconfined_u:system_r:httpd_t:s0"
    • The SELinux context of the process that attempted the denied action. In this case, it is the SELinux context of the Apache HTTP Server, which is running in the httpd_t domain.
  • tcontext="unconfined_u:object_r:samba_share_t:s0"
    • The SELinux context of the object (target) the process attempted to access. In this case, it is the SELinux context of file1. Note: the samba_share_t type is not accessible to processes running in the httpd_t domain.
  • From the system call (SYSCALL) message, two items are of interest:
    • success=no: indicates whether the denial (AVC) was enforced or not. success=no indicates the system call was not successful (SELinux denied access). success=yes indicates the system call was successful - this can be seen for permissive domains or unconfined domains, such as initrc_t and kernel_t.
    • exe="/usr/sbin/httpd": the full path to the executable that launched the process, which in this case, is exe="/usr/sbin/httpd".

contains 36 rules

Configure auditd Data Retention   [ref]group

The audit system writes data to /var/log/audit/audit.log. By default, auditd rotates 5 logs by size (6MB), retaining a maximum of 30MB of data in total, and refuses to write entries when the disk is too full. This minimizes the risk of audit data filling its partition and impacting other services. This also minimizes the risk of the audit daemon temporarily disabling the system if it cannot write audit log (which it can be configured to do). For a busy system or a system which is thoroughly auditing system activity, the default settings for data retention may be insufficient. The log file size needed will depend heavily on what types of events are being audited. First configure auditing to log all the events of interest. Then monitor the log size manually for awhile to determine what file size will allow you to keep the required data for the correct time period.

Using a dedicated partition for /var/log/audit prevents the auditd logs from disrupting system functionality if they fill, and, more importantly, prevents other activity in /var from filling the partition and stopping the audit trail. (The audit logs are size-limited and therefore unlikely to grow without bound unless configured to do so.) Some machines may have requirements that no actions occur which cannot be audited. If this is the case, then auditd can be configured to halt the machine if it runs out of space. Note: Since older logs are rotated, configuring auditd this way does not prevent older logs from being rotated away before they can be viewed. If your system is configured to halt when logging cannot be performed, make sure this can never happen under normal circumstances! Ensure that /var/log/audit is on its own partition, and that this partition is larger than the maximum amount of data auditd will retain normally.

References:  AU-11, 138

contains 5 rules

Configure auditd Max Log File Size   [ref]rule

Determine the amount of audit data (in megabytes) which should be retained in each log file. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting the correct value of 20 for STOREMB:

max_log_file = STOREMB
Set the value to 6 (MB) or higher for general-purpose systems. Larger values, of course, support retention of even more audit data.

Rationale:

The total storage for audit log files must be large enough to retain log information over the period required. This is a function of the maximum log file size and the number of logs retained.

Severity:  medium

Identifiers:  CCE-27319-3

References:  AU-1(b), AU-11, IR-5, Req-10.7, 5.2.1.1, 5.4.1.1

Remediation Shell script:   (show)


var_auditd_max_log_file="20"

AUDITCONFIG=/etc/audit/auditd.conf

grep -q ^max_log_file $AUDITCONFIG && \
  sed -i 's/^max_log_file.*/max_log_file = '"$var_auditd_max_log_file"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
  echo "max_log_file = $var_auditd_max_log_file" >> $AUDITCONFIG
fi

Configure auditd max_log_file_action Upon Reaching Maximum Log Size   [ref]rule

The default action to take when the logs reach their maximum size is to rotate the log files, discarding the oldest one. To configure the action taken by auditd, add or correct the line in /etc/audit/auditd.conf:

max_log_file_action = ACTION
Possible values for ACTION are described in the auditd.conf man page. These include:
  • ignore
  • syslog
  • suspend
  • rotate
  • keep_logs
Set the ACTION to rotate to ensure log rotation occurs. This is the default. The setting is case-insensitive.

Rationale:

Automatically rotating logs (by setting this to rotate) minimizes the chances of the system unexpectedly running out of disk space by being overwhelmed with log data. However, for systems that must never discard log data, or which use external processes to transfer it and reclaim space, keep_logs can be employed.

Severity:  medium

Identifiers:  CCE-27231-0

References:  AU-1(b), AU-4, AU-11, IR-5, Req-10.7, 5.2.1.3, 5.4.1.1

Remediation Shell script:   (show)


var_auditd_max_log_file_action="keep_logs"

AUDITCONFIG=/etc/audit/auditd.conf

grep -q ^max_log_file_action $AUDITCONFIG && \
  sed -i 's/^max_log_file_action.*/max_log_file_action = '"$var_auditd_max_log_file_action"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
  echo "max_log_file_action = $var_auditd_max_log_file_action" >> $AUDITCONFIG
fi

Configure auditd space_left Action on Low Disk Space   [ref]rule

The auditd service can be configured to take an action when disk space starts to run low. Edit the file /etc/audit/auditd.conf. Modify the following line, substituting ACTION appropriately:

space_left_action = ACTION
Possible values for ACTION are described in the auditd.conf man page. These include:
  • ignore
  • syslog
  • email
  • exec
  • suspend
  • single
  • halt
Set this to email (instead of the default, which is suspend) as it is more likely to get prompt attention. Acceptable values also include suspend, single, and halt.

Rationale:

Notifying administrators of an impending disk space problem may allow them to take corrective action prior to any disruption.

Severity:  medium

Identifiers:  CCE-27375-5

References:  AU-1(b), AU-4, AU-5(1), AU-5(b), IR-5, 1855, Req-10.7, 5.2.1.2, SRG-OS-000343-GPOS-00134, 030340, 5.4.1.1, 3.3.1

Remediation Shell script:   (show)


var_auditd_space_left_action="email"

grep -q ^space_left_action /etc/audit/auditd.conf && \
  sed -i "s/space_left_action.*/space_left_action = $var_auditd_space_left_action/g" /etc/audit/auditd.conf
if ! [ $? -eq 0 ]; then
    echo "space_left_action = $var_auditd_space_left_action" >> /etc/audit/auditd.conf
fi

Configure auditd admin_space_left Action on Low Disk Space   [ref]rule

The auditd service can be configured to take an action when disk space is running low but prior to running out of space completely. Edit the file /etc/audit/auditd.conf. Add or modify the following line, substituting ACTION appropriately:

admin_space_left_action = ACTION
Set this value to single to cause the system to switch to single user mode for corrective action. Acceptable values also include suspend and halt. For certain systems, the need for availability outweighs the need to log all actions, and a different setting should be determined. Details regarding all possible values for ACTION are described in the auditd.conf man page.

Rationale:

Administrators should be made aware of an inability to record audit records. If a separate partition or logical volume of adequate size is used, running low on space for audit records should never occur.

Severity:  medium

Identifiers:  CCE-27370-6

References:  AU-1(b), AU-4, AU-5(b), IR-5, 140, 1343, Req-10.7, 5.2.1.2, 5.4.1.1, 3.3.1

Remediation Shell script:   (show)


var_auditd_admin_space_left_action="halt"

grep -q ^admin_space_left_action /etc/audit/auditd.conf && \
  sed -i "s/admin_space_left_action.*/admin_space_left_action = $var_auditd_admin_space_left_action/g" /etc/audit/auditd.conf
if ! [ $? -eq 0 ]; then
    echo "admin_space_left_action = $var_auditd_admin_space_left_action" >> /etc/audit/auditd.conf
fi

Configure auditd mail_acct Action on Low Disk Space   [ref]rule

The auditd service can be configured to send email to a designated account in certain situations. Add or correct the following line in /etc/audit/auditd.conf to ensure that administrators are notified via email for those situations:

action_mail_acct = root

Rationale:

Email sent to the root account is typically aliased to the administrators of the system, who can take appropriate action.

Severity:  medium

Remediation Shell script:   (show)


var_auditd_action_mail_acct="root"

AUDITCONFIG=/etc/audit/auditd.conf

grep -q ^action_mail_acct $AUDITCONFIG && \
  sed -i 's/^action_mail_acct.*/action_mail_acct = '"$var_auditd_action_mail_acct"'/g' $AUDITCONFIG
if ! [ $? -eq 0 ]; then
  echo "action_mail_acct = $var_auditd_action_mail_acct" >> $AUDITCONFIG
fi

Configure auditd Rules for Comprehensive Auditing   [ref]group

The auditd program can perform comprehensive monitoring of system activity. This section describes recommended configuration settings for comprehensive auditing, but a full description of the auditing system's capabilities is beyond the scope of this guide. The mailing list linux-audit@redhat.com exists to facilitate community discussion of the auditing system.

The audit subsystem supports extensive collection of events, including:

  • Tracing of arbitrary system calls (identified by name or number) on entry or exit.
  • Filtering by PID, UID, call success, system call argument (with some limitations), etc.
  • Monitoring of specific files for modifications to the file's contents or metadata.

Auditing rules at startup are controlled by the file /etc/audit/audit.rules. Add rules to it to meet the auditing requirements for your organization. Each line in /etc/audit/audit.rules represents a series of arguments that can be passed to auditctl and can be individually tested during runtime. See documentation in /usr/share/doc/audit-VERSION and in the related man pages for more details.

If copying any example audit rulesets from /usr/share/doc/audit-VERSION, be sure to comment out the lines containing arch= which are not appropriate for your system's architecture. Then review and understand the following rules, ensuring rules are activated as needed for the appropriate architecture.

After reviewing all the rules, reading the following sections, and editing as needed, the new rules can be activated as follows:
$ sudo service auditd restart

contains 29 rules

Records Events that Modify Date and Time Information   [ref]group

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time. All changes to the system time should be audited.

contains 4 rules

Record attempts to alter time through adjtimex   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity:  low

Identifiers:  CCE-27290-6

References:  AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 5.2.4, Req-10.4.2.b, 1487, 169, 5.4.1.1, 3.1.7

Remediation Shell script:   (show)

# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 7 or Fedora OSes
function rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation {

# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do

	PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
	# Create expected audit group and audit rule form for particular system call & architecture
	if [ ${ARCH} = "b32" ]
	then
		# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
		# so append it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\|stime\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
	elif [ ${ARCH} = "b64" ]
	then
		# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
		# therefore don't add it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
	fi
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

}

rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation

Record attempts to alter time through settimeofday   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity:  low

Identifiers:  CCE-27216-1

References:  AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 5.2.4, Req-10.4.2.b, 1487, 169, 5.4.1.1, 3.1.7

Remediation Shell script:   (show)

# Perform the remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on Red Hat Enterprise Linux 7 or Fedora OSes
function rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation {

# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do

	PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
	# Create expected audit group and audit rule form for particular system call & architecture
	if [ ${ARCH} = "b32" ]
	then
		# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
		# so append it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\|stime\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
	elif [ ${ARCH} = "b64" ]
	then
		# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
		# therefore don't add it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
	fi
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

}

rhel7_fedora_perform_audit_adjtimex_settimeofday_stime_remediation

Record Attempts to Alter Time Through clock_settime   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity:  low

Identifiers:  CCE-27219-5

References:  AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 5.2.4, Req-10.4.2.b, 1487, 169, 5.4.1.1, 3.1.7

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S clock_settime -F a0=.* \(-F key=\|-k \).*"
	GROUP="clock_settime"
	FULL_RULE="-a always,exit -F arch=$ARCH -S clock_settime -F a0=0x0 -k time-change"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Attempts to Alter the localtime File   [ref]rule

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-w /etc/localtime -p wa -k audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/localtime -p wa -k audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport and should always be used.

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity:  low

Identifiers:  CCE-27310-2

References:  AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(b), IR-5, 5.2.4, Req-10.4.2.b, 1487, 169, 5.4.1.1, 3.1.7

Remediation Shell script:   (show)



# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	# Case when particular audit rule is already defined in some of /etc/audit/rules.d/*.rules file
	# Get pair -- filepath : matching_row into @matches array
	IFS=$'\n' matches=($(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect=("${files_to_inspect[@]}" "$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}

fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
fix_audit_watch_rule "augenrules" "/etc/localtime" "wa" "audit_time_rules"

Record Events that Modify the System's Discretionary Access Controls   [ref]group

At a minimum, the audit system should collect file permission changes for all users and root. Note that the "-F arch=b32" lines should be present even on a 64 bit system. These commands identify system calls for auditing. Even if the system is 64 bit it can still execute 32 bit system calls. Additionally, these rules can be configured in a number of ways while still achieving the desired effect. An example of this is that the "-S" calls could be split up and placed on separate lines, however, this is less efficient. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
    -a always,exit -F arch=b32 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
    -a always,exit -F arch=b32 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
    -a always,exit -F arch=b64 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
    -a always,exit -F arch=b64 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

contains 13 rules

Record Events that Modify the System's Discretionary Access Controls - chmod   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="chmod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -S fchmod -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - chown   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=${ARCH} -S .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="chown"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - fchmod   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="chmod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -S fchmod -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - fchmodat   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="chmod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -S fchmod -S fchmodat -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - fchown   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=${ARCH} -S .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="chown"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - fchownat   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=${ARCH} -S .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="chown"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - fremovexattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - fsetxattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - lchown   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=${ARCH} -S .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="chown"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S chown -S fchown -S fchownat -S lchown -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - lremovexattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - lsetxattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - removexattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  medium

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Record Events that Modify the System's Discretionary Access Controls - setxattr   [ref]rule

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=4294967295 -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity:  low

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit .* -F auid>=1000 -F auid!=4294967295 -k *"
	GROUP="xattr"
	FULL_RULE="-a always,exit -F arch=${ARCH} -S setxattr -S lsetxattr -S fsetxattr -S removexattr -S lremovexattr -S fremovexattr -F auid>=1000 -F auid!=4294967295 -k perm_mod"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect=("${files_to_inspect[@]}" '/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)')
	# Check if particular audit rule is already defined
	IFS=$'\n' matches=($(sed -s -n -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules))
	# Reset IFS back to default
	unset IFS
	for match in "${matches[@]}"
	do
		files_to_inspect=("${files_to_inspect[@]}" "${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		files_to_inspect="/etc/audit/rules.d/$key.rules"
		if [ ! -e "$files_to_inspect" ]
		then
			touch "$files_to_inspect"
			chmod 0640 "$files_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do

	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	IFS=$'\n' existing_rules=($(sed -e "/${pattern}/!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file"))
	# Reset IFS back to default
	unset IFS

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo $rule | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "/${rule}/d" "$audit_file"
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "/${rule}/d" "$audit_file"
				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS=$'-S' read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				unset IFS
				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

}

	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
contains 1 rule

Record Unauthorized Access Attempts Events to Files (unsuccessful)   [ref]group

At a minimum, the audit system should collect unauthorized file accesses for all users and root. Note that the "-F arch=b32" lines should be present even on a 64 bit system. These commands identify system calls for auditing. Even if the system is 64 bit it can still execute 32 bit system calls. Additionally, these rules can be configured in a number of ways while still achieving the desired effect. An example of this is that the "-S" calls could be split up and placed on separate lines, however, this is less efficient. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
    -a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
If your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
    -a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access

contains 1 rule

Ensure auditd Collects Unauthorized Access Attempts to Files (unsuccessful)   [ref]rule

At a minimum the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=4294967295 -F key=access

Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity:  medium

Identifiers:  CCE-27347-4

References:  AC-17(7), AU-1(b), AU-2(a), AU-2(c), AU-2(d), AU-12(a), AU-12(c), IR-5, 172, 2884, Req-10.2.4, Req-10.2.1, 5.2.10, 5.4.1.1, 3.1.7

Remediation Shell script:   (show)



# Perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ $(getconf LONG_BIT) = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do

	# First fix the -EACCES requirement
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k *"
	# Use escaped BRE regex to specify rule group
	GROUP="\(creat\|open\|truncate\)"
	FULL_RULE="-a always,exit -F arch=$ARCH -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=4294967295 -k access"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# ----------------------------------------------------------