Guide to the Secure Configuration of Oracle Linux 8

with profile Standard System Security Profile for Oracle Linux 8
This profile contains rules to ensure standard security baseline of Oracle Linux 8 system. Regardless of your system's workload all of these checks should pass.
This guide presents a catalog of security-relevant configuration settings for Oracle Linux 8. It is a rendering of content structured in the eXtensible Configuration Checklist Description Format (XCCDF) in order to support security automation. The SCAP content is is available in the scap-security-guide package which is developed at https://www.open-scap.org/security-policies/scap-security-guide.

Providing system administrators with such guidance informs them how to securely configure systems under their control in a variety of network roles. Policy makers and baseline creators can use this catalog of settings, with its associated references to higher-level security control catalogs, in order to assist them in security baseline creation. This guide is a catalog, not a checklist, and satisfaction of every item is not likely to be possible or sensible in many operational scenarios. However, the XCCDF format enables granular selection and adjustment of settings, and their association with OVAL and OCIL content provides an automated checking capability. Transformations of this document, and its associated automated checking content, are capable of providing baselines that meet a diverse set of policy objectives. Some example XCCDF Profiles, which are selections of items that form checklists and can be used as baselines, are available with this guide. They can be processed, in an automated fashion, with tools that support the Security Content Automation Protocol (SCAP). The DISA STIG, which provides required settings for US Department of Defense systems, is one example of a baseline created from this guidance.
Do not attempt to implement any of the settings in this guide without first testing them in a non-operational environment. The creators of this guidance assume no responsibility whatsoever for its use by other parties, and makes no guarantees, expressed or implied, about its quality, reliability, or any other characteristic.

Profile Information

Profile TitleStandard System Security Profile for Oracle Linux 8
Profile IDxccdf_org.ssgproject.content_profile_standard

CPE Platforms

  • cpe:/o:oracle:linux:8

Revision History

Current version: 0.1.48

  • draft (as of 2020-01-15)

Table of Contents

  1. System Settings
    1. Configure Syslog
    2. Account and Access Control
    3. File Permissions and Masks
    4. System Accounting with auditd
    5. Installing and Maintaining Software
  2. Services
    1. Cron and At Daemons
    2. Base Services

Checklist

Group   Guide to the Secure Configuration of Oracle Linux 8   Group contains 29 groups and 76 rules
Group   System Settings   Group contains 25 groups and 71 rules

[ref]   Contains rules that check correct system settings.

Group   Configure Syslog   Group contains 2 rules

[ref]   The syslog service has been the default Unix logging mechanism for many years. It has a number of downsides, including inconsistent log format, lack of authentication for received messages, and lack of authentication, encryption, or reliable transport for messages sent over a network. However, due to its long history, syslog is a de facto standard which is supported by almost all Unix applications.

In Oracle Linux 8, rsyslog has replaced ksyslogd as the syslog daemon of choice, and it includes some additional security features such as reliable, connection-oriented (i.e. TCP) transmission of logs, the option to log to database formats, and the encryption of log data en route to a central logging server. This section discusses how to configure rsyslog for best effect, and how to use tools provided with the system to maintain and monitor logs.

Rule   Ensure rsyslog is Installed   [ref]

Rsyslog is installed by default. The rsyslog package can be installed with the following command:

 $ sudo yum install rsyslog

Rationale:

The rsyslog package provides the rsyslog daemon, which provides system logging services.

Severity: 
medium
Identifiers and References

References:  NT28(R5), NT28(R46), 4.2.3, 1, 14, 15, 16, 3, 5, 6, APO11.04, BAI03.05, DSS05.04, DSS05.07, MEA02.01, CCI-001311, CCI-001312, 164.312(a)(2)(ii), 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, CM-6(a), PR.PT-1, SRG-OS-000479-GPOS-00224, SRG-OS-000051-GPOS-00024

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

if ! rpm -q --quiet "rsyslog" ; then
    yum install -y "rsyslog"
fi
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Ensure rsyslog is installed
  package:
    name: rsyslog
    state: present
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - package_rsyslog_installed
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-53-CM-6(a)
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
include install_rsyslog

class install_rsyslog {
  package { 'rsyslog':
    ensure => 'installed',
  }
}
Remediation Anaconda snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable

package --add=rsyslog

Rule   Enable rsyslog Service   [ref]

The rsyslog service provides syslog-style logging by default on Oracle Linux 8. The rsyslog service can be enabled with the following command:

$ sudo systemctl enable rsyslog.service

Rationale:

The rsyslog service must be running in order to provide logging services, which are essential to system administration.

Severity: 
medium
Identifiers and References

References:  NT28(R5), NT28(R46), 4.2.1.1, 1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO13.01, BAI03.05, BAI04.04, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, CCI-001311, CCI-001312, CCI-001557, CCI-001851, 164.312(a)(2)(ii), 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2, SR 7.1, SR 7.2, A.12.1.3, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2, A.17.2.1, CM-6(a), AU-4(1), DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.DS-4, PR.PT-1

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:enable

SYSTEMCTL_EXEC='/usr/bin/systemctl'
"$SYSTEMCTL_EXEC" start 'rsyslog.service'
"$SYSTEMCTL_EXEC" enable 'rsyslog.service'
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
- name: Enable service rsyslog
  block:

    - name: Gather the package facts
      package_facts:
        manager: auto

    - name: Enable service rsyslog
      service:
        name: rsyslog
        enabled: 'yes'
        state: started
      when:
        - '"rsyslog" in ansible_facts.packages'
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - service_rsyslog_enabled
    - medium_severity
    - enable_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-53-CM-6(a)
    - NIST-800-53-AU-4(1)
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
include enable_rsyslog

class enable_rsyslog {
  service {'rsyslog':
    enable => true,
    ensure => 'running',
  }
}
Group   Account and Access Control   Group contains 4 groups and 4 rules

[ref]   In traditional Unix security, if an attacker gains shell access to a certain login account, they can perform any action or access any file to which that account has access. Therefore, making it more difficult for unauthorized people to gain shell access to accounts, particularly to privileged accounts, is a necessary part of securing a system. This section introduces mechanisms for restricting access to accounts under Oracle Linux 8.

Group   Protect Accounts by Restricting Password-Based Login   Group contains 1 group and 2 rules

[ref]   Conventionally, Unix shell accounts are accessed by providing a username and password to a login program, which tests these values for correctness using the /etc/passwd and /etc/shadow files. Password-based login is vulnerable to guessing of weak passwords, and to sniffing and man-in-the-middle attacks against passwords entered over a network or at an insecure console. Therefore, mechanisms for accessing accounts by entering usernames and passwords should be restricted to those which are operationally necessary.

Group   Verify Proper Storage and Existence of Password Hashes   Group contains 2 rules

[ref]   By default, password hashes for local accounts are stored in the second field (colon-separated) in /etc/shadow. This file should be readable only by processes running with root credentials, preventing users from casually accessing others' password hashes and attempting to crack them. However, it remains possible to misconfigure the system and store password hashes in world-readable files such as /etc/passwd, or to even store passwords themselves in plaintext on the system. Using system-provided tools for password change/creation should allow administrators to avoid such misconfiguration.

Rule   Verify All Account Password Hashes are Shadowed   [ref]

If any password hashes are stored in /etc/passwd (in the second field, instead of an x or *), the cause of this misconfiguration should be investigated. The account should have its password reset and the hash should be properly stored, or the account should be deleted entirely.

Rationale:

The hashes for all user account passwords should be stored in the file /etc/shadow and never in /etc/passwd, which is readable by all users.

Severity: 
medium
Identifiers and References

References:  1, 12, 15, 16, 5, 5.5.2, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, 3.5.10, 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, A.18.1.4, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, IA-5(h), CM-6(a), PR.AC-1, PR.AC-6, PR.AC-7, Req-8.2.1

Rule   Prevent Login to Accounts With Empty Password   [ref]

If an account is configured for password authentication but does not have an assigned password, it may be possible to log into the account without authentication. Remove any instances of the nullok option in /etc/pam.d/system-auth to prevent logins with empty passwords.

Rationale:

If an account has an empty password, anyone could log in and run commands with the privileges of that account. Accounts with empty passwords should never be used in operational environments.

Severity: 
high
Identifiers and References

References:  1, 12, 13, 14, 15, 16, 18, 3, 5, 5.5.2, APO01.06, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.02, DSS06.03, DSS06.10, 3.1.1, 3.1.5, CCI-000366, 164.308(a)(1)(ii)(B), 164.308(a)(7)(i), 164.308(a)(7)(ii)(A), 164.310(a)(1), 164.310(a)(2)(i), 164.310(a)(2)(ii), 164.310(a)(2)(iii), 164.310(b), 164.310(c), 164.310(d)(1), 164.310(d)(2)(iii), 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 5.2, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.18.1.4, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.1, A.9.4.2, A.9.4.3, A.9.4.4, A.9.4.5, IA-5(1)(a), IA-5(c), CM-6(a), PR.AC-1, PR.AC-4, PR.AC-6, PR.AC-7, PR.DS-5, FIA_AFL.1, Req-8.2.3, SRG-OS-000480-GPOS-00227

Remediation Shell script:   (show)

sed --follow-symlinks -i 's/\<nullok\>//g' /etc/pam.d/system-auth
sed --follow-symlinks -i 's/\<nullok\>//g' /etc/pam.d/password-auth
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Strategy:configure
- name: Prevent Log In to Accounts With Empty Password - system-auth
  replace:
    dest: /etc/pam.d/system-auth
    follow: true
    regexp: nullok
  tags:
    - no_empty_passwords
    - high_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - no_reboot_needed
    - PCI-DSS-Req-8.2.3
    - NIST-800-171-3.1.1
    - NIST-800-171-3.1.5
    - NIST-800-53-IA-5(1)(a)
    - NIST-800-53-IA-5(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.5.2

- name: Prevent Log In to Accounts With Empty Password - password-auth
  replace:
    dest: /etc/pam.d/password-auth
    follow: true
    regexp: nullok
  tags:
    - no_empty_passwords
    - high_severity
    - configure_strategy
    - low_complexity
    - medium_disruption
    - no_reboot_needed
    - PCI-DSS-Req-8.2.3
    - NIST-800-171-3.1.1
    - NIST-800-171-3.1.5
    - NIST-800-53-IA-5(1)(a)
    - NIST-800-53-IA-5(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.5.2
Group   Secure Session Configuration Files for Login Accounts   Group contains 1 group and 2 rules

[ref]   When a user logs into a Unix account, the system configures the user's session by reading a number of files. Many of these files are located in the user's home directory, and may have weak permissions as a result of user error or misconfiguration. If an attacker can modify or even read certain types of account configuration information, they can often gain full access to the affected user's account. Therefore, it is important to test and correct configuration file permissions for interactive accounts, particularly those of privileged users such as root or system administrators.

Group   Ensure that No Dangerous Directories Exist in Root's Path   Group contains 2 rules

[ref]   The active path of the root account can be obtained by starting a new root shell and running:

# echo $PATH
This will produce a colon-separated list of directories in the path.

Certain path elements could be considered dangerous, as they could lead to root executing unknown or untrusted programs, which could contain malicious code. Since root may sometimes work inside untrusted directories, the . character, which represents the current directory, should never be in the root path, nor should any directory which can be written to by an unprivileged or semi-privileged (system) user.

It is a good practice for administrators to always execute privileged commands by typing the full path to the command.

Rule   Ensure that Root's Path Does Not Include Relative Paths or Null Directories   [ref]

Ensure that none of the directories in root's path is equal to a single . character, or that it contains any instances that lead to relative path traversal, such as .. or beginning a path without the slash (/) character. Also ensure that there are no "empty" elements in the path, such as in these examples:

PATH=:/bin
PATH=/bin:
PATH=/bin::/sbin
These empty elements have the same effect as a single . character.

Rationale:

Including these entries increases the risk that root could execute code from an untrusted location.

Severity: 
unknown
Identifiers and References

References:  11, 3, 9, BAI10.01, BAI10.02, BAI10.03, BAI10.05, CCI-000366, 4.3.4.3.2, 4.3.4.3.3, SR 7.6, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, CM-6(a), CM-6(a), PR.IP-1

Rule   Ensure that Root's Path Does Not Include World or Group-Writable Directories   [ref]

For each element in root's path, run:

# ls -ld DIR
and ensure that write permissions are disabled for group and other.

Rationale:

Such entries increase the risk that root could execute code provided by unprivileged users, and potentially malicious code.

Severity: 
medium
Identifiers and References

References:  11, 3, 9, BAI10.01, BAI10.02, BAI10.03, BAI10.05, CCI-000366, 4.3.4.3.2, 4.3.4.3.3, SR 7.6, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, CM-6(a), CM-6(a), PR.IP-1

Remediation Ansible snippet:   (show)

Complexity:low
Disruption:medium
Strategy:restrict
- name: Print error message if user is not root
  fail:
    msg: Root account required to read root $PATH
  when: ansible_user != "root"
  ignore_errors: true
  tags:
    - accounts_root_path_dirs_no_write
    - medium_severity
    - restrict_strategy
    - low_complexity
    - medium_disruption
    - no_reboot_needed
    - NIST-800-53-CM-6(a)
    - NIST-800-53-CM-6(a)

- name: Get root paths which are not symbolic links
  stat:
    path: '{{ item }}'
  changed_when: false
  failed_when: false
  register: root_paths
  with_items: '{{ ansible_env.PATH.split('':'') }}'
  when: ansible_user == "root"
  tags:
    - accounts_root_path_dirs_no_write
    - medium_severity
    - restrict_strategy
    - low_complexity
    - medium_disruption
    - no_reboot_needed
    - NIST-800-53-CM-6(a)
    - NIST-800-53-CM-6(a)

- name: Disable writability to root directories
  file:
    path: '{{ item.item }}'
    mode: g-w,o-w
  with_items: '{{ root_paths.results }}'
  when:
    - root_paths.results is defined
    - item.stat.exists
    - not item.stat.islnk
  tags:
    - accounts_root_path_dirs_no_write
    - medium_severity
    - restrict_strategy
    - low_complexity
    - medium_disruption
    - no_reboot_needed
    - NIST-800-53-CM-6(a)
    - NIST-800-53-CM-6(a)
Group   File Permissions and Masks   Group contains 3 groups and 7 rules

[ref]   Traditional Unix security relies heavily on file and directory permissions to prevent unauthorized users from reading or modifying files to which they should not have access.

Several of the commands in this section search filesystems for files or directories with certain characteristics, and are intended to be run on every local partition on a given system. When the variable PART appears in one of the commands below, it means that the command is intended to be run repeatedly, with the name of each local partition substituted for PART in turn.

The following command prints a list of all xfs partitions on the local system, which is the default filesystem for Oracle Linux 8 installations:

$ mount -t xfs | awk '{print $3}'
For any systems that use a different local filesystem type, modify this command as appropriate.

Group   Verify Permissions on Important Files and Directories   Group contains 4 rules

[ref]   Permissions for many files on a system must be set restrictively to ensure sensitive information is properly protected. This section discusses important permission restrictions which can be verified to ensure that no harmful discrepancies have arisen.

Rule   Ensure All SGID Executables Are Authorized   [ref]

The SGID (set group id) bit should be set only on files that were installed via authorized means. A straightforward means of identifying unauthorized SGID files is determine if any were not installed as part of an RPM package, which is cryptographically verified. Investigate the origin of any unpackaged SGID files. This configuration check considers authorized SGID files which were installed via RPM. It is assumed that when an individual has sudo access to install an RPM and all packages are signed with an organizationally-recognized GPG key, the software should be considered an approved package on the system. Any SGID file not deployed through an RPM will be flagged for further review.

Rationale:

Executable files with the SGID permission run with the privileges of the owner of the file. SGID files of uncertain provenance could allow for unprivileged users to elevate privileges. The presence of these files should be strictly controlled on the system.

Severity: 
medium
Identifiers and References

References:  NT28(R37), NT28(R38), 6.1.14, 12, 13, 14, 15, 16, 18, 3, 5, APO01.06, DSS05.04, DSS05.07, DSS06.02, 4.3.3.7.3, SR 2.1, SR 5.2, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-6(a), AC-6(1), PR.AC-4, PR.DS-5

Rule   Ensure No World-Writable Files Exist   [ref]

It is generally a good idea to remove global (other) write access to a file when it is discovered. However, check with documentation for specific applications before making changes. Also, monitor for recurring world-writable files, as these may be symptoms of a misconfigured application or user account. Finally, this applies to real files and not virtual files that are a part of pseudo file systems such as sysfs or procfs.

Rationale:

Data in world-writable files can be modified by any user on the system. In almost all circumstances, files can be configured using a combination of user and group permissions to support whatever legitimate access is needed without the risk caused by world-writable files.

Severity: 
medium
Identifiers and References

References:  6.1.10, 12, 13, 14, 15, 16, 18, 3, 5, APO01.06, DSS05.04, DSS05.07, DSS06.02, 4.3.3.7.3, SR 2.1, SR 5.2, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-6(a), AC-6(1), PR.AC-4, PR.DS-5

Rule   Ensure All SUID Executables Are Authorized   [ref]

The SUID (set user id) bit should be set only on files that were installed via authorized means. A straightforward means of identifying unauthorized SUID files is determine if any were not installed as part of an RPM package, which is cryptographically verified. Investigate the origin of any unpackaged SUID files. This configuration check considers authorized SUID files which were installed via RPM. It is assumed that when an individual has sudo access to install an RPM and all packages are signed with an organizationally-recognized GPG key, the software should be considered an approved package on the system. Any SUID file not deployed through an RPM will be flagged for further review.

Rationale:

Executable files with the SUID permission run with the privileges of the owner of the file. SUID files of uncertain provenance could allow for unprivileged users to elevate privileges. The presence of these files should be strictly controlled on the system.

Severity: 
medium
Identifiers and References

References:  NT28(R37), NT28(R38), 6.1.13, 12, 13, 14, 15, 16, 18, 3, 5, APO01.06, DSS05.04, DSS05.07, DSS06.02, 4.3.3.7.3, SR 2.1, SR 5.2, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-6(a), AC-6(1), PR.AC-4, PR.DS-5

Rule   Verify that All World-Writable Directories Have Sticky Bits Set   [ref]

When the so-called 'sticky bit' is set on a directory, only the owner of a given file may remove that file from the directory. Without the sticky bit, any user with write access to a directory may remove any file in the directory. Setting the sticky bit prevents users from removing each other's files. In cases where there is no reason for a directory to be world-writable, a better solution is to remove that permission rather than to set the sticky bit. However, if a directory is used by a particular application, consult that application's documentation instead of blindly changing modes.
To set the sticky bit on a world-writable directory DIR, run the following command:

$ sudo chmod +t DIR

Rationale:

Failing to set the sticky bit on public directories allows unauthorized users to delete files in the directory structure.

The only authorized public directories are those temporary directories supplied with the system, or those designed to be temporary file repositories. The setting is normally reserved for directories used by the system, by users for temporary file storage (such as /tmp), and for directories requiring global read/write access.

Severity: 
medium
Identifiers and References

References:  1.1.21, 12, 13, 14, 15, 16, 18, 3, 5, APO01.06, DSS05.04, DSS05.07, DSS06.02, 4.3.3.7.3, SR 2.1, SR 5.2, A.10.1.1, A.11.1.4, A.11.1.5, A.11.2.1, A.13.1.1, A.13.1.3, A.13.2.1, A.13.2.3, A.13.2.4, A.14.1.2, A.14.1.3, A.6.1.2, A.7.1.1, A.7.1.2, A.7.3.1, A.8.2.2, A.8.2.3, A.9.1.1, A.9.1.2, A.9.2.3, A.9.4.1, A.9.4.4, A.9.4.5, CM-6(a), AC-6(1), PR.AC-4, PR.DS-5

Group   Restrict Dynamic Mounting and Unmounting of Filesystems   Group contains 1 rule

[ref]   Linux includes a number of facilities for the automated addition and removal of filesystems on a running system. These facilities may be necessary in many environments, but this capability also carries some risk -- whether direct risk from allowing users to introduce arbitrary filesystems, or risk that software flaws in the automated mount facility itself could allow an attacker to compromise the system.

This command can be used to list the types of filesystems that are available to the currently executing kernel:

$ find /lib/modules/`uname -r`/kernel/fs -type f -name '*.ko'
If these filesystems are not required then they can be explicitly disabled in a configuratio file in /etc/modprobe.d.

Rule   Disable the Automounter   [ref]

The autofs daemon mounts and unmounts filesystems, such as user home directories shared via NFS, on demand. In addition, autofs can be used to handle removable media, and the default configuration provides the cdrom device as /misc/cd. However, this method of providing access to removable media is not common, so autofs can almost always be disabled if NFS is not in use. Even if NFS is required, it may be possible to configure filesystem mounts statically by editing /etc/fstab rather than relying on the automounter.

The autofs service can be disabled with the following command:

$ sudo systemctl disable autofs.service
The autofs service can be masked with the following command:
$ sudo systemctl mask autofs.service

Rationale:

Disabling the automounter permits the administrator to statically control filesystem mounting through /etc/fstab.

Additionally, automatically mounting filesystems permits easy introduction of unknown devices, thereby facilitating malicious activity.

Severity: 
medium
Identifiers and References

References:  1.1.22, 1, 12, 15, 16, 5, APO13.01, DSS01.04, DSS05.03, DSS05.04, DSS05.05, DSS05.07, DSS05.10, DSS06.03, DSS06.10, 3.4.6, CCI-000366, CCI-000778, CCI-001958, 164.308(a)(3)(i), 164.308(a)(3)(ii)(A), 164.310(d)(1), 164.310(d)(2), 164.312(a)(1), 164.312(a)(2)(iv), 164.312(b), 4.3.3.2.2, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.2, 4.3.3.7.4, SR 1.1, SR 1.10, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.6, A.11.2.6, A.13.1.1, A.13.2.1, A.18.1.4, A.6.2.1, A.6.2.2, A.7.1.1, A.9.2.1, A.9.2.2, A.9.2.3, A.9.2.4, A.9.2.6, A.9.3.1, A.9.4.2, A.9.4.3, CM-7(a), CM-7(b), CM-6(a), MP-7, PR.AC-1, PR.AC-3, PR.AC-6, PR.AC-7, SRG-OS-000114-GPOS-00059, SRG-OS-000378-GPOS-00163, SRG-OS-000480-GPOS-00227

Remediation Shell script:   (show)

Complexity:low
Disruption:low
Strategy:disable


SYSTEMCTL_EXEC='/usr/bin/systemctl'
"$SYSTEMCTL_EXEC" stop 'autofs.service'
"$SYSTEMCTL_EXEC" disable 'autofs.service'
"$SYSTEMCTL_EXEC" mask 'autofs.service'
# Disable socket activation if we have a unit file for it
if "$SYSTEMCTL_EXEC" list-unit-files | grep -q '^autofs.socket'; then
    "$SYSTEMCTL_EXEC" stop 'autofs.socket'
    "$SYSTEMCTL_EXEC" disable 'autofs.socket'
    "$SYSTEMCTL_EXEC" mask 'autofs.socket'
fi
# The service may not be running because it has been started and failed,
# so let's reset the state so OVAL checks pass.
# Service should be 'inactive', not 'failed' after reboot though.
"$SYSTEMCTL_EXEC" reset-failed 'autofs.service' || true
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:disable
- name: Disable service autofs
  block:

    - name: Gather the service facts
      service_facts: null

    - name: Disable service autofs
      systemd:
        name: autofs.service
        enabled: 'no'
        state: stopped
        masked: 'yes'
      when: '"autofs.service" in ansible_facts.services'
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - service_autofs_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.4.6
    - NIST-800-53-CM-7(a)
    - NIST-800-53-CM-7(b)
    - NIST-800-53-CM-6(a)
    - NIST-800-53-MP-7

- name: Unit Socket Exists - autofs.socket
  command: systemctl list-unit-files autofs.socket
  args:
    warn: false
  register: socket_file_exists
  changed_when: false
  ignore_errors: true
  check_mode: false
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - service_autofs_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.4.6
    - NIST-800-53-CM-7(a)
    - NIST-800-53-CM-7(b)
    - NIST-800-53-CM-6(a)
    - NIST-800-53-MP-7

- name: Disable socket autofs
  systemd:
    name: autofs.socket
    enabled: 'no'
    state: stopped
    masked: 'yes'
  when:
    - '"autofs.socket" in socket_file_exists.stdout_lines[1]'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - service_autofs_disabled
    - medium_severity
    - disable_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.4.6
    - NIST-800-53-CM-7(a)
    - NIST-800-53-CM-7(b)
    - NIST-800-53-CM-6(a)
    - NIST-800-53-MP-7
Remediation Puppet snippet:   (show)

Complexity:low
Disruption:low
Strategy:enable
include disable_autofs

class disable_autofs {
  service {'autofs':
    enable => false,
    ensure => 'stopped',
  }
}
Group   Restrict Partition Mount Options   Group contains 2 rules

[ref]   System partitions can be mounted with certain options that limit what files on those partitions can do. These options are set in the /etc/fstab configuration file, and can be used to make certain types of malicious behavior more difficult.

Rule   Add nosuid Option to /dev/shm   [ref]

The nosuid mount option can be used to prevent execution of setuid programs in /dev/shm. The SUID and SGID permissions should not be required in these world-writable directories. Add the nosuid option to the fourth column of /etc/fstab for the line which controls mounting of /dev/shm.

Rationale:

The presence of SUID and SGID executables should be tightly controlled. Users should not be able to execute SUID or SGID binaries from temporary storage partitions.

Severity: 
medium
Identifiers and References

References:  1.1.16, 11, 13, 14, 3, 8, 9, APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS05.06, DSS06.06, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6, A.11.2.9, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.8.2.1, A.8.2.2, A.8.2.3, A.8.3.1, A.8.3.3, A.9.1.2, CM-7(a), CM-7(b), CM-6(a), AC-6, AC-6(1), MP-7, PR.IP-1, PR.PT-2, PR.PT-3, SRG-OS-000368-GPOS-00154

Remediation Shell script:   (show)

function include_mount_options_functions {
	:
}

# $1: type of filesystem
# $2: new mount point option
# $3: filesystem of new mount point (used when adding new entry in fstab)
# $4: mount type of new mount point (used when adding new entry in fstab)
function ensure_mount_option_for_vfstype {
        local _vfstype="$1" _new_opt="$2" _filesystem=$3 _type=$4 _vfstype_points=()
        readarray -t _vfstype_points < <(grep -E "[[:space:]]${_vfstype}[[:space:]]" /etc/fstab | awk '{print $2}')

        for _vfstype_point in "${_vfstype_points[@]}"
        do
                ensure_mount_option_in_fstab "$_vfstype_point" "$_new_opt" "$_filesystem" "$_type"
        done
}

# $1: mount point
# $2: new mount point option
# $3: device or virtual string (used when adding new entry in fstab)
# $4: mount type of mount point (used when adding new entry in fstab)
function ensure_mount_option_in_fstab {
	local _mount_point="$1" _new_opt="$2" _device=$3 _type=$4
	local _mount_point_match_regexp="" _previous_mount_opts=""
	_mount_point_match_regexp="$(get_mount_point_regexp "$_mount_point")"

	if [ "$(grep -c "$_mount_point_match_regexp" /etc/fstab)" -eq 0 ]; then
		# runtime opts without some automatic kernel/userspace-added defaults
		_previous_mount_opts=$(grep "$_mount_point_match_regexp" /etc/mtab | head -1 |  awk '{print $4}' \
					| sed -E "s/(rw|defaults|seclabel|${_new_opt})(,|$)//g;s/,$//")
		[ "$_previous_mount_opts" ] && _previous_mount_opts+=","
		echo "${_device} ${_mount_point} ${_type} defaults,${_previous_mount_opts}${_new_opt} 0 0" >> /etc/fstab
	elif [ "$(grep "$_mount_point_match_regexp" /etc/fstab | grep -c "$_new_opt")" -eq 0 ]; then
		_previous_mount_opts=$(grep "$_mount_point_match_regexp" /etc/fstab | awk '{print $4}')
		sed -i "s|\(${_mount_point_match_regexp}.*${_previous_mount_opts}\)|\1,${_new_opt}|" /etc/fstab
	fi
}

# $1: mount point
function get_mount_point_regexp {
		printf "[[:space:]]%s[[:space:]]" "$1"
}

# $1: mount point
function assert_mount_point_in_fstab {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	grep "$_mount_point_match_regexp" -q /etc/fstab \
		|| { echo "The mount point '$1' is not even in /etc/fstab, so we can't set up mount options" >&2; return 1; }
}

# $1: mount point
function remove_defaults_from_fstab_if_overriden {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	if grep "$_mount_point_match_regexp" /etc/fstab | grep -q "defaults,"
	then
		sed -i "s|\(${_mount_point_match_regexp}.*\)defaults,|\1|" /etc/fstab
	fi
}

# $1: mount point
function ensure_partition_is_mounted {
	local _mount_point="$1"
	mkdir -p "$_mount_point" || return 1
	if mountpoint -q "$_mount_point"; then
		mount -o remount --target "$_mount_point"
	else
		mount --target "$_mount_point"
	fi
}
include_mount_options_functions

function perform_remediation {
	# test "$mount_has_to_exist" = 'yes'
	if test "no" = 'yes'; then
		assert_mount_point_in_fstab /dev/shm || { echo "Not remediating, because there is no record of /dev/shm in /etc/fstab" >&2; return 1; }
	fi

	ensure_mount_option_in_fstab "/dev/shm" "nosuid" "tmpfs" "tmpfs"

	ensure_partition_is_mounted "/dev/shm"
}

perform_remediation
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:high
Strategy:configure
- name: get back mount information associated to mountpoint
  command: findmnt --fstab '/dev/shm'
  register: device_name
  failed_when: device_name.rc > 1
  changed_when: false
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - mount_option_dev_shm_nosuid
    - medium_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - no_reboot_needed
    - NIST-800-53-CM-7(a)
    - NIST-800-53-CM-7(b)
    - NIST-800-53-CM-6(a)
    - NIST-800-53-AC-6
    - NIST-800-53-AC-6(1)
    - NIST-800-53-MP-7

- name: create mount_info dictionary variable
  set_fact:
    mount_info: '{{ mount_info|default({})|combine({item.0: item.1}) }}'
  with_together:
    - '{{ device_name.stdout_lines[0].split() | list | lower }}'
    - '{{ device_name.stdout_lines[1].split() | list }}'
  when:
    - device_name.stdout is defined and device_name.stdout_lines is defined
    - (device_name.stdout | length > 0)
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - mount_option_dev_shm_nosuid
    - medium_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - no_reboot_needed
    - NIST-800-53-CM-7(a)
    - NIST-800-53-CM-7(b)
    - NIST-800-53-CM-6(a)
    - NIST-800-53-AC-6
    - NIST-800-53-AC-6(1)
    - NIST-800-53-MP-7

- name: Ensure permission nosuid are set on /dev/shm
  mount:
    path: /dev/shm
    src: '{{ mount_info.source }}'
    opts: '{{ mount_info.options }},nosuid'
    state: mounted
    fstype: '{{ mount_info.fstype }}'
  when:
    - device_name.stdout is defined
    - (device_name.stdout | length > 0)
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - mount_option_dev_shm_nosuid
    - medium_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - no_reboot_needed
    - NIST-800-53-CM-7(a)
    - NIST-800-53-CM-7(b)
    - NIST-800-53-CM-6(a)
    - NIST-800-53-AC-6
    - NIST-800-53-AC-6(1)
    - NIST-800-53-MP-7

Rule   Add nodev Option to /dev/shm   [ref]

The nodev mount option can be used to prevent creation of device files in /dev/shm. Legitimate character and block devices should not exist within temporary directories like /dev/shm. Add the nodev option to the fourth column of /etc/fstab for the line which controls mounting of /dev/shm.

Rationale:

The only legitimate location for device files is the /dev directory located on the root partition. The only exception to this is chroot jails.

Severity: 
medium
Identifiers and References

References:  1.1.15, 11, 13, 14, 3, 8, 9, APO13.01, BAI10.01, BAI10.02, BAI10.03, BAI10.05, DSS05.02, DSS05.05, DSS05.06, DSS06.06, 4.3.3.5.1, 4.3.3.5.2, 4.3.3.5.3, 4.3.3.5.4, 4.3.3.5.5, 4.3.3.5.6, 4.3.3.5.7, 4.3.3.5.8, 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, 4.3.3.6.9, 4.3.3.7.1, 4.3.3.7.2, 4.3.3.7.3, 4.3.3.7.4, 4.3.4.3.2, 4.3.4.3.3, SR 1.1, SR 1.10, SR 1.11, SR 1.12, SR 1.13, SR 1.2, SR 1.3, SR 1.4, SR 1.5, SR 1.6, SR 1.7, SR 1.8, SR 1.9, SR 2.1, SR 2.2, SR 2.3, SR 2.4, SR 2.5, SR 2.6, SR 2.7, SR 7.6, A.11.2.9, A.12.1.2, A.12.5.1, A.12.6.2, A.14.2.2, A.14.2.3, A.14.2.4, A.8.2.1, A.8.2.2, A.8.2.3, A.8.3.1, A.8.3.3, A.9.1.2, CM-7(a), CM-7(b), CM-6(a), AC-6, AC-6(1), MP-7, PR.IP-1, PR.PT-2, PR.PT-3, SRG-OS-000368-GPOS-00154

Remediation Shell script:   (show)

function include_mount_options_functions {
	:
}

# $1: type of filesystem
# $2: new mount point option
# $3: filesystem of new mount point (used when adding new entry in fstab)
# $4: mount type of new mount point (used when adding new entry in fstab)
function ensure_mount_option_for_vfstype {
        local _vfstype="$1" _new_opt="$2" _filesystem=$3 _type=$4 _vfstype_points=()
        readarray -t _vfstype_points < <(grep -E "[[:space:]]${_vfstype}[[:space:]]" /etc/fstab | awk '{print $2}')

        for _vfstype_point in "${_vfstype_points[@]}"
        do
                ensure_mount_option_in_fstab "$_vfstype_point" "$_new_opt" "$_filesystem" "$_type"
        done
}

# $1: mount point
# $2: new mount point option
# $3: device or virtual string (used when adding new entry in fstab)
# $4: mount type of mount point (used when adding new entry in fstab)
function ensure_mount_option_in_fstab {
	local _mount_point="$1" _new_opt="$2" _device=$3 _type=$4
	local _mount_point_match_regexp="" _previous_mount_opts=""
	_mount_point_match_regexp="$(get_mount_point_regexp "$_mount_point")"

	if [ "$(grep -c "$_mount_point_match_regexp" /etc/fstab)" -eq 0 ]; then
		# runtime opts without some automatic kernel/userspace-added defaults
		_previous_mount_opts=$(grep "$_mount_point_match_regexp" /etc/mtab | head -1 |  awk '{print $4}' \
					| sed -E "s/(rw|defaults|seclabel|${_new_opt})(,|$)//g;s/,$//")
		[ "$_previous_mount_opts" ] && _previous_mount_opts+=","
		echo "${_device} ${_mount_point} ${_type} defaults,${_previous_mount_opts}${_new_opt} 0 0" >> /etc/fstab
	elif [ "$(grep "$_mount_point_match_regexp" /etc/fstab | grep -c "$_new_opt")" -eq 0 ]; then
		_previous_mount_opts=$(grep "$_mount_point_match_regexp" /etc/fstab | awk '{print $4}')
		sed -i "s|\(${_mount_point_match_regexp}.*${_previous_mount_opts}\)|\1,${_new_opt}|" /etc/fstab
	fi
}

# $1: mount point
function get_mount_point_regexp {
		printf "[[:space:]]%s[[:space:]]" "$1"
}

# $1: mount point
function assert_mount_point_in_fstab {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	grep "$_mount_point_match_regexp" -q /etc/fstab \
		|| { echo "The mount point '$1' is not even in /etc/fstab, so we can't set up mount options" >&2; return 1; }
}

# $1: mount point
function remove_defaults_from_fstab_if_overriden {
	local _mount_point_match_regexp
	_mount_point_match_regexp="$(get_mount_point_regexp "$1")"
	if grep "$_mount_point_match_regexp" /etc/fstab | grep -q "defaults,"
	then
		sed -i "s|\(${_mount_point_match_regexp}.*\)defaults,|\1|" /etc/fstab
	fi
}

# $1: mount point
function ensure_partition_is_mounted {
	local _mount_point="$1"
	mkdir -p "$_mount_point" || return 1
	if mountpoint -q "$_mount_point"; then
		mount -o remount --target "$_mount_point"
	else
		mount --target "$_mount_point"
	fi
}
include_mount_options_functions

function perform_remediation {
	# test "$mount_has_to_exist" = 'yes'
	if test "no" = 'yes'; then
		assert_mount_point_in_fstab /dev/shm || { echo "Not remediating, because there is no record of /dev/shm in /etc/fstab" >&2; return 1; }
	fi

	ensure_mount_option_in_fstab "/dev/shm" "nodev" "tmpfs" "tmpfs"

	ensure_partition_is_mounted "/dev/shm"
}

perform_remediation
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:high
Strategy:configure
- name: get back mount information associated to mountpoint
  command: findmnt --fstab '/dev/shm'
  register: device_name
  failed_when: device_name.rc > 1
  changed_when: false
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - mount_option_dev_shm_nodev
    - medium_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - no_reboot_needed
    - NIST-800-53-CM-7(a)
    - NIST-800-53-CM-7(b)
    - NIST-800-53-CM-6(a)
    - NIST-800-53-AC-6
    - NIST-800-53-AC-6(1)
    - NIST-800-53-MP-7

- name: create mount_info dictionary variable
  set_fact:
    mount_info: '{{ mount_info|default({})|combine({item.0: item.1}) }}'
  with_together:
    - '{{ device_name.stdout_lines[0].split() | list | lower }}'
    - '{{ device_name.stdout_lines[1].split() | list }}'
  when:
    - device_name.stdout is defined and device_name.stdout_lines is defined
    - (device_name.stdout | length > 0)
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - mount_option_dev_shm_nodev
    - medium_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - no_reboot_needed
    - NIST-800-53-CM-7(a)
    - NIST-800-53-CM-7(b)
    - NIST-800-53-CM-6(a)
    - NIST-800-53-AC-6
    - NIST-800-53-AC-6(1)
    - NIST-800-53-MP-7

- name: Ensure permission nodev are set on /dev/shm
  mount:
    path: /dev/shm
    src: '{{ mount_info.source }}'
    opts: '{{ mount_info.options }},nodev'
    state: mounted
    fstype: '{{ mount_info.fstype }}'
  when:
    - device_name.stdout is defined
    - (device_name.stdout | length > 0)
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - mount_option_dev_shm_nodev
    - medium_severity
    - configure_strategy
    - low_complexity
    - high_disruption
    - no_reboot_needed
    - NIST-800-53-CM-7(a)
    - NIST-800-53-CM-7(b)
    - NIST-800-53-CM-6(a)
    - NIST-800-53-AC-6
    - NIST-800-53-AC-6(1)
    - NIST-800-53-MP-7
Group   System Accounting with auditd   Group contains 7 groups and 45 rules

[ref]   The audit service provides substantial capabilities for recording system activities. By default, the service audits about SELinux AVC denials and certain types of security-relevant events such as system logins, account modifications, and authentication events performed by programs such as sudo. Under its default configuration, auditd has modest disk space requirements, and should not noticeably impact system performance.

NOTE: The Linux Audit daemon auditd can be configured to use the augenrules program to read audit rules files (*.rules) located in /etc/audit/rules.d location and compile them to create the resulting form of the /etc/audit/audit.rules configuration file during the daemon startup (default configuration). Alternatively, the auditd daemon can use the auditctl utility to read audit rules from the /etc/audit/audit.rules configuration file during daemon startup, and load them into the kernel. The expected behavior is configured via the appropriate ExecStartPost directive setting in the /usr/lib/systemd/system/auditd.service configuration file. To instruct the auditd daemon to use the augenrules program to read audit rules (default configuration), use the following setting:

ExecStartPost=-/sbin/augenrules --load
in the /usr/lib/systemd/system/auditd.service configuration file. In order to instruct the auditd daemon to use the auditctl utility to read audit rules, use the following setting:
ExecStartPost=-/sbin/auditctl -R /etc/audit/audit.rules
in the /usr/lib/systemd/system/auditd.service configuration file. Refer to [Service] section of the /usr/lib/systemd/system/auditd.service configuration file for further details.

Government networks often have substantial auditing requirements and auditd can be configured to meet these requirements. Examining some example audit records demonstrates how the Linux audit system satisfies common requirements. The following example from Fedora Documentation available at https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/SELinux_Users_and_Administrators_Guide/sect-Security-Enhanced_Linux-Troubleshooting-Fixing_Problems.html#sect-Security-Enhanced_Linux-Fixing_Problems-Raw_Audit_Messages shows the substantial amount of information captured in a two typical "raw" audit messages, followed by a breakdown of the most important fields. In this example the message is SELinux-related and reports an AVC denial (and the associated system call) that occurred when the Apache HTTP Server attempted to access the /var/www/html/file1 file (labeled with the samba_share_t type):
type=AVC msg=audit(1226874073.147:96): avc:  denied  { getattr } for pid=2465 comm="httpd"
path="/var/www/html/file1" dev=dm-0 ino=284133 scontext=unconfined_u:system_r:httpd_t:s0
tcontext=unconfined_u:object_r:samba_share_t:s0 tclass=file

type=SYSCALL msg=audit(1226874073.147:96): arch=40000003 syscall=196 success=no exit=-13
a0=b98df198 a1=bfec85dc a2=54dff4 a3=2008171 items=0 ppid=2463 pid=2465 auid=502 uid=48
gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48 fsgid=48 tty=(none) ses=6 comm="httpd"
exe="/usr/sbin/httpd" subj=unconfined_u:system_r:httpd_t:s0 key=(null)
  • msg=audit(1226874073.147:96)
    • The number in parentheses is the unformatted time stamp (Epoch time) for the event, which can be converted to standard time by using the date command.
  • { getattr }
    • The item in braces indicates the permission that was denied. getattr indicates the source process was trying to read the target file's status information. This occurs before reading files. This action is denied due to the file being accessed having the wrong label. Commonly seen permissions include getattr, read, and write.
  • comm="httpd"
    • The executable that launched the process. The full path of the executable is found in the exe= section of the system call (SYSCALL) message, which in this case, is exe="/usr/sbin/httpd".
  • path="/var/www/html/file1"
    • The path to the object (target) the process attempted to access.
  • scontext="unconfined_u:system_r:httpd_t:s0"
    • The SELinux context of the process that attempted the denied action. In this case, it is the SELinux context of the Apache HTTP Server, which is running in the httpd_t domain.
  • tcontext="unconfined_u:object_r:samba_share_t:s0"
    • The SELinux context of the object (target) the process attempted to access. In this case, it is the SELinux context of file1. Note: the samba_share_t type is not accessible to processes running in the httpd_t domain.
  • From the system call (SYSCALL) message, two items are of interest:
    • success=no: indicates whether the denial (AVC) was enforced or not. success=no indicates the system call was not successful (SELinux denied access). success=yes indicates the system call was successful - this can be seen for permissive domains or unconfined domains, such as initrc_t and kernel_t.
    • exe="/usr/sbin/httpd": the full path to the executable that launched the process, which in this case, is exe="/usr/sbin/httpd".

Group   Configure auditd Rules for Comprehensive Auditing   Group contains 6 groups and 45 rules

[ref]   The auditd program can perform comprehensive monitoring of system activity. This section describes recommended configuration settings for comprehensive auditing, but a full description of the auditing system's capabilities is beyond the scope of this guide. The mailing list linux-audit@redhat.com exists to facilitate community discussion of the auditing system.

The audit subsystem supports extensive collection of events, including:

  • Tracing of arbitrary system calls (identified by name or number) on entry or exit.
  • Filtering by PID, UID, call success, system call argument (with some limitations), etc.
  • Monitoring of specific files for modifications to the file's contents or metadata.

Auditing rules at startup are controlled by the file /etc/audit/audit.rules. Add rules to it to meet the auditing requirements for your organization. Each line in /etc/audit/audit.rules represents a series of arguments that can be passed to auditctl and can be individually tested during runtime. See documentation in /usr/share/doc/audit-VERSION and in the related man pages for more details.

If copying any example audit rulesets from /usr/share/doc/audit-VERSION, be sure to comment out the lines containing arch= which are not appropriate for your system's architecture. Then review and understand the following rules, ensuring rules are activated as needed for the appropriate architecture.

After reviewing all the rules, reading the following sections, and editing as needed, the new rules can be activated as follows:
$ sudo service auditd restart

Group   Record Information on Kernel Modules Loading and Unloading   Group contains 1 rule

[ref]   To capture kernel module loading and unloading events, use following lines, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:

-a always,exit -F arch=ARCH -S init_module,delete_module -F key=modules
Place to add the lines depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the lines to file /etc/audit/audit.rules.

Rule   Ensure auditd Collects Information on Kernel Module Loading and Unloading   [ref]

To capture kernel module loading and unloading events, use following lines, setting ARCH to either b32 for 32-bit system, or having two lines for both b32 and b64 in case your system is 64-bit:


-a always,exit -F arch=ARCH -S init_module,finit_module,delete_module -F key=modules

The place to add the lines depends on a way auditd daemon is configured. If it is configured to use the augenrules program (the default), add the lines to a file with suffix .rules in the directory /etc/audit/rules.d. If the auditd daemon is configured to use the auditctl utility, add the lines to file /etc/audit/audit.rules.

Rationale:

The addition/removal of kernel modules can be used to alter the behavior of the kernel and potentially introduce malicious code into kernel space. It is important to have an audit trail of modules that have been introduced into the kernel.

Severity: 
medium
Identifiers and References

References:  5.2.17, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.7

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
# Note: 32-bit and 64-bit kernel syscall numbers not always line up =>
#       it's required on a 64-bit system to check also for the presence
#       of 32-bit's equivalent of the corresponding rule.
#       (See `man 7 audit.rules` for details )
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
        GROUP="modules"

        PATTERN="-a always,exit -F arch=$ARCH -S init_module -S delete_module -S finit_module \(-F key=\|-k \).*"
        FULL_RULE="-a always,exit -F arch=$ARCH -S init_module -S delete_module -S finit_module -k modules"

        # Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
        fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
        fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Group   Records Events that Modify Date and Time Information   Group contains 5 rules

[ref]   Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time. All changes to the system time should be audited.

Rule   Record Attempts to Alter Time Through stime   [ref]

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d for both 32 bit and 64 bit systems:

-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit lookup table, the corresponding "-F arch=b64" form of this rule is not expected to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule form itself is sufficient for both 32 bit and 64 bit systems). If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file for both 32 bit and 64 bit systems:
-a always,exit -F arch=b32 -S stime -F key=audit_time_rules
Since the 64 bit version of the "stime" system call is not defined in the audit lookup table, the corresponding "-F arch=b64" form of this rule is not expected to be defined on 64 bit systems (the aforementioned "-F arch=b32" stime rule form itself is sufficient for both 32 bit and 64 bit systems). The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined system calls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
medium
Identifiers and References

References:  1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001487, CCI-000169, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.4.2.b

Remediation Shell script:   (show)

# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}


# Function to perform remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on RHEL, Fedora or OL systems.
# Remediation performed for both possible tools: 'auditctl' and 'augenrules'.
#
# Note: 'stime' system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore excluded from the list of time group system calls to be audited on this arch
#
# Example Call:
#
#      perform_audit_adjtimex_settimeofday_stime_remediation
#
function perform_audit_adjtimex_settimeofday_stime_remediation {

# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do

	PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
	# Create expected audit group and audit rule form for particular system call & architecture
	if [ ${ARCH} = "b32" ]
	then
		# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
		# so append it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\|stime\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
	elif [ ${ARCH} = "b64" ]
	then
		# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
		# therefore don't add it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
	fi
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

}
perform_audit_adjtimex_settimeofday_stime_remediation

Rule   Record attempts to alter time through settimeofday   [ref]

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S settimeofday -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S settimeofday -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
medium
Identifiers and References

References:  5.2.4, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001487, CCI-000169, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.4.2.b

Remediation Shell script:   (show)

# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}


# Function to perform remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on RHEL, Fedora or OL systems.
# Remediation performed for both possible tools: 'auditctl' and 'augenrules'.
#
# Note: 'stime' system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore excluded from the list of time group system calls to be audited on this arch
#
# Example Call:
#
#      perform_audit_adjtimex_settimeofday_stime_remediation
#
function perform_audit_adjtimex_settimeofday_stime_remediation {

# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do

	PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
	# Create expected audit group and audit rule form for particular system call & architecture
	if [ ${ARCH} = "b32" ]
	then
		# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
		# so append it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\|stime\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
	elif [ ${ARCH} = "b64" ]
	then
		# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
		# therefore don't add it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
	fi
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

}
perform_audit_adjtimex_settimeofday_stime_remediation

Rule   Record Attempts to Alter the localtime File   [ref]

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-w /etc/localtime -p wa -k audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-w /etc/localtime -p wa -k audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport and should always be used.

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
medium
Identifiers and References

References:  5.2.4, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001487, CCI-000169, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.4.2.b

Remediation Shell script:   (show)



# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix audit file system object watch rule for given path:
# * if rule exists, also verifies the -w bits match the requirements
# * if rule doesn't exist yet, appends expected rule form to $files_to_inspect
#   audit rules file, depending on the tool which was used to load audit rules
#
# Expects four arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules'
# * path                        	value of -w audit rule's argument
# * required access bits        	value of -p audit rule's argument
# * key                         	value of -k audit rule's argument
#
# Example call:
#
#       fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
#
function fix_audit_watch_rule {

# Load function arguments into local variables
local tool="$1"
local path="$2"
local required_access_bits="$3"
local key="$4"

# Check sanity of the input
if [ $# -ne "4" ]
then
	echo "Usage: fix_audit_watch_rule 'tool' 'path' 'bits' 'key'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
#
# -----------------------------------------------------------------------------------------
# Tool used to load audit rules	| Rule already defined	|  Audit rules file to inspect	  |
# -----------------------------------------------------------------------------------------
#	auditctl		|     Doesn't matter	|  /etc/audit/audit.rules	  |
# -----------------------------------------------------------------------------------------
# 	augenrules		|          Yes		|  /etc/audit/rules.d/*.rules	  |
# 	augenrules		|          No		|  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
declare -a files_to_inspect
files_to_inspect=()

# Check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	exit 1
# If the audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# into the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules')
# If the audit is 'augenrules', then check if rule is already defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to list of files for inspection.
# If rule isn't defined, add '/etc/audit/rules.d/$key.rules' to list of files for inspection.
elif [ "$tool" == 'augenrules' ]
then
	readarray -t matches < <(grep -P "[\s]*-w[\s]+$path" /etc/audit/rules.d/*.rules)

	# For each of the matched entries
	for match in "${matches[@]}"
	do
		# Extract filepath from the match
		rulesd_audit_file=$(echo $match | cut -f1 -d ':')
		# Append that path into list of files for inspection
		files_to_inspect+=("$rulesd_audit_file")
	done
	# Case when particular audit rule isn't defined yet
	if [ "${#files_to_inspect[@]}" -eq "0" ]
	then
		# Append '/etc/audit/rules.d/$key.rules' into list of files for inspection
		local key_rule_file="/etc/audit/rules.d/$key.rules"
		# If the $key.rules file doesn't exist yet, create it with correct permissions
		if [ ! -e "$key_rule_file" ]
		then
			touch "$key_rule_file"
			chmod 0640 "$key_rule_file"
		fi

		files_to_inspect+=("$key_rule_file")
	fi
fi

# Finally perform the inspection and possible subsequent audit rule
# correction for each of the files previously identified for inspection
for audit_rules_file in "${files_to_inspect[@]}"
do

	# Check if audit watch file system object rule for given path already present
	if grep -q -P -- "[\s]*-w[\s]+$path" "$audit_rules_file"
	then
		# Rule is found => verify yet if existing rule definition contains
		# all of the required access type bits

		# Escape slashes in path for use in sed pattern below
		local esc_path=${path//$'/'/$'\/'}
		# Define BRE whitespace class shortcut
		local sp="[[:space:]]"
		# Extract current permission access types (e.g. -p [r|w|x|a] values) from audit rule
		current_access_bits=$(sed -ne "s/$sp*-w$sp\+$esc_path$sp\+-p$sp\+\([rxwa]\{1,4\}\).*/\1/p" "$audit_rules_file")
		# Split required access bits string into characters array
		# (to check bit's presence for one bit at a time)
		for access_bit in $(echo "$required_access_bits" | grep -o .)
		do
			# For each from the required access bits (e.g. 'w', 'a') check
			# if they are already present in current access bits for rule.
			# If not, append that bit at the end
			if ! grep -q "$access_bit" <<< "$current_access_bits"
			then
				# Concatenate the existing mask with the missing bit
				current_access_bits="$current_access_bits$access_bit"
			fi
		done
		# Propagate the updated rule's access bits (original + the required
		# ones) back into the /etc/audit/audit.rules file for that rule
		sed -i "s/\($sp*-w$sp\+$esc_path$sp\+-p$sp\+\)\([rxwa]\{1,4\}\)\(.*\)/\1$current_access_bits\3/" "$audit_rules_file"
	else
		# Rule isn't present yet. Append it at the end of $audit_rules_file file
		# with proper key

		echo "-w $path -p $required_access_bits -k $key" >> "$audit_rules_file"
	fi
done
}
fix_audit_watch_rule "auditctl" "/etc/localtime" "wa" "audit_time_rules"
fix_audit_watch_rule "augenrules" "/etc/localtime" "wa" "audit_time_rules"

Rule   Record Attempts to Alter Time Through clock_settime   [ref]

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S clock_settime -F a0=0x0 -F key=time-change
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S clock_settime -F a0=0x0 -F key=time-change
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
medium
Identifiers and References

References:  5.2.4, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001487, CCI-000169, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.4.2.b

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S clock_settime -F a0=.* \(-F key=\|-k \).*"
	GROUP="clock_settime"
	FULL_RULE="-a always,exit -F arch=$ARCH -S clock_settime -F a0=0x0 -k time-change"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

Rule   Record attempts to alter time through adjtimex   [ref]

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S adjtimex -F key=audit_time_rules
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S adjtimex -F key=audit_time_rules
The -k option allows for the specification of a key in string form that can be used for better reporting capability through ausearch and aureport. Multiple system calls can be defined on the same line to save space if desired, but is not required. See an example of multiple combined syscalls:
-a always,exit -F arch=b64 -S adjtimex,settimeofday -F key=audit_time_rules

Rationale:

Arbitrary changes to the system time can be used to obfuscate nefarious activities in log files, as well as to confuse network services that are highly dependent upon an accurate system time (such as sshd). All changes to the system time should be audited.

Severity: 
medium
Identifiers and References

References:  5.2.4, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-001487, CCI-000169, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.4.2.b

Remediation Shell script:   (show)

# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}


# Function to perform remediation for the 'adjtimex', 'settimeofday', and 'stime' audit
# system calls on RHEL, Fedora or OL systems.
# Remediation performed for both possible tools: 'auditctl' and 'augenrules'.
#
# Note: 'stime' system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
# therefore excluded from the list of time group system calls to be audited on this arch
#
# Example Call:
#
#      perform_audit_adjtimex_settimeofday_stime_remediation
#
function perform_audit_adjtimex_settimeofday_stime_remediation {

# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do

	PATTERN="-a always,exit -F arch=${ARCH} -S .* -k *"
	# Create expected audit group and audit rule form for particular system call & architecture
	if [ ${ARCH} = "b32" ]
	then
		# stime system call is known at 32-bit arch (see e.g "$ ausyscall i386 stime" 's output)
		# so append it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\|stime\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -S stime -k audit_time_rules"
	elif [ ${ARCH} = "b64" ]
	then
		# stime system call isn't known at 64-bit arch (see "$ ausyscall x86_64 stime" 's output)
		# therefore don't add it to the list of time group system calls to be audited
		GROUP="\(adjtimex\|settimeofday\)"
		FULL_RULE="-a always,exit -F arch=${ARCH} -S adjtimex -S settimeofday -k audit_time_rules"
	fi
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done

}
perform_audit_adjtimex_settimeofday_stime_remediation
Group   Record Events that Modify the System's Discretionary Access Controls   Group contains 13 rules

[ref]   At a minimum, the audit system should collect file permission changes for all users and root. Note that the "-F arch=b32" lines should be present even on a 64 bit system. These commands identify system calls for auditing. Even if the system is 64 bit it can still execute 32 bit system calls. Additionally, these rules can be configured in a number of ways while still achieving the desired effect. An example of this is that the "-S" calls could be split up and placed on separate lines, however, this is less efficient. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b32 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b32 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S chmod,fchmod,fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b64 -S chown,fchown,fchownat,lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    -a always,exit -F arch=b64 -S setxattr,lsetxattr,fsetxattr,removexattr,lremovexattr,fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Rule   Record Events that Modify the System's Discretionary Access Controls - fchown   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S fchown.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit fchown tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_fchown
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_fchown.matched is defined and find_fchown.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_fchown.files | map(attribute=''path'') | list | first }}'
  when:
    - find_fchown.matched is defined and find_fchown.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchown rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchown rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchown rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchown rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - setxattr   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S setxattr.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit setxattr tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_setxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_setxattr
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_setxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_setxattr.matched is defined and find_setxattr.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_setxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_setxattr.files | map(attribute=''path'') | list | first }}'
  when:
    - find_setxattr.matched is defined and find_setxattr.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_setxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the setxattr rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_setxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the setxattr rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_setxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the setxattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_setxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the setxattr rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_setxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - chown   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S chown.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit chown tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_chown
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_chown.matched is defined and find_chown.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_chown.files | map(attribute=''path'') | list | first }}'
  when:
    - find_chown.matched is defined and find_chown.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the chown rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the chown rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the chown rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the chown rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - fchownat   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S fchownat.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit fchownat tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchownat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_fchownat
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchownat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_fchownat.matched is defined and find_fchownat.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchownat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_fchownat.files | map(attribute=''path'') | list | first }}'
  when:
    - find_fchownat.matched is defined and find_fchownat.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchownat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchownat rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchownat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchownat rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchownat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchownat rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchownat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchownat rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchownat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - chmod   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S chmod.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit chmod tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_chmod
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_chmod.matched is defined and find_chmod.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_chmod.files | map(attribute=''path'') | list | first }}'
  when:
    - find_chmod.matched is defined and find_chmod.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the chmod rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the chmod rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the chmod rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the chmod rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_chmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - removexattr   [ref]

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S removexattr.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S removexattr -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit removexattr tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_removexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_removexattr
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_removexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_removexattr.matched is defined and find_removexattr.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_removexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_removexattr.files | map(attribute=''path'') | list | first }}'
  when:
    - find_removexattr.matched is defined and find_removexattr.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_removexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the removexattr rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_removexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the removexattr rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_removexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the removexattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S removexattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_removexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the removexattr rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_removexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - fchmod   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S fchmod.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit fchmod tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_fchmod
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_fchmod.matched is defined and find_fchmod.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_fchmod.files | map(attribute=''path'') | list | first }}'
  when:
    - find_fchmod.matched is defined and find_fchmod.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchmod rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchmod rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchmod rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchmod rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmod
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - lsetxattr   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S lsetxattr.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S lsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit lsetxattr tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_lsetxattr
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_lsetxattr.matched is defined and find_lsetxattr.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_lsetxattr.files | map(attribute=''path'') | list | first }}'
  when:
    - find_lsetxattr.matched is defined and find_lsetxattr.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lsetxattr rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lsetxattr rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lsetxattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S lsetxattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lsetxattr rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - fremovexattr   [ref]

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S fremovexattr.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S fremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit fremovexattr tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_fremovexattr
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_fremovexattr.matched is defined and find_fremovexattr.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_fremovexattr.files | map(attribute=''path'') | list | first }}'
  when:
    - find_fremovexattr.matched is defined and find_fremovexattr.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fremovexattr rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset
      -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fremovexattr rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset
      -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fremovexattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S fremovexattr -F auid>=1000 -F auid!=unset
      -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fremovexattr rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=unset
      -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - lchown   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000474-GPOS-00219, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S lchown.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit lchown tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_lchown
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_lchown.matched is defined and find_lchown.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_lchown.files | map(attribute=''path'') | list | first }}'
  when:
    - find_lchown.matched is defined and find_lchown.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lchown rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lchown rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lchown rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lchown rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lchown
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - fsetxattr   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S fsetxattr.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S fsetxattr -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit fsetxattr tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_fsetxattr
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_fsetxattr.matched is defined and find_fsetxattr.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_fsetxattr.files | map(attribute=''path'') | list | first }}'
  when:
    - find_fsetxattr.matched is defined and find_fsetxattr.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fsetxattr rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fsetxattr rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fsetxattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S fsetxattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fsetxattr rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=unset -F
      key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fsetxattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - fchmodat   [ref]

At a minimum, the audit system should collect file permission changes for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000126, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S fchmodat.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit fchmodat tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmodat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_fchmodat
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmodat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_fchmodat.matched is defined and find_fchmodat.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmodat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_fchmodat.files | map(attribute=''path'') | list | first }}'
  when:
    - find_fchmodat.matched is defined and find_fchmodat.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmodat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchmodat rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmodat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchmodat rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmodat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchmodat rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmodat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the fchmodat rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=unset -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_fchmodat
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

Rule   Record Events that Modify the System's Discretionary Access Controls - lremovexattr   [ref]

At a minimum, the audit system should collect file permission changes for all users and root.

If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod


If the system is 64 bit then also add the following line:
-a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod

Warning:  Note that these rules can be configured in a number of ways while still achieving the desired effect. Here the system calls have been placed independent of other system calls. Grouping these system calls with others as identifying earlier in this guide is more efficient.
Rationale:

The changing of file permissions could indicate that a user is attempting to gain access to information that would otherwise be disallowed. Auditing DAC modifications can facilitate the identification of patterns of abuse among both authorized and unauthorized users.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.5.5, SRG-OS-000064-GPOS-00033, SRG-OS-000392-GPOS-00172, SRG-OS-000458-GPOS-00203, SRG-OS-000458-VMM-001810, SRG-OS-000474-VMM-001940

Remediation Shell script:   (show)



# First perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S lremovexattr.*"
	GROUP="perm_mod"
	FULL_RULE="-a always,exit -F arch=$ARCH -S lremovexattr -F auid>=1000 -F auid!=unset -F key=perm_mod"

	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Reboot:true
Strategy:restrict
- name: Set architecture for audit lremovexattr tasks
  set_fact:
    audit_arch: b{{ ansible_architecture | regex_replace('.*(\d\d$)','\1') }}
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Search /etc/audit/rules.d for other DAC audit rules
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: -F key=perm_mod$
    patterns: '*.rules'
  register: find_lremovexattr
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: If existing DAC ruleset not found, use /etc/audit/rules.d/privileged.rules
    as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_lremovexattr.matched is defined and find_lremovexattr.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_lremovexattr.files | map(attribute=''path'') | list | first }}'
  when:
    - find_lremovexattr.matched is defined and find_lremovexattr.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lremovexattr rule in rules.d when on x86
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset
      -F key=perm_mod
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lremovexattr rule in rules.d when on x86_64
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset
      -F key=perm_mod
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lremovexattr rule in /etc/audit/audit.rules when on x86
  lineinfile:
    line: -a always,exit -F arch=b32 -S lremovexattr -F auid>=1000 -F auid!=unset
      -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1

- name: Inserts/replaces the lremovexattr rule in audit.rules when on x86_64
  lineinfile:
    line: -a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=unset
      -F key=perm_mod
    state: present
    dest: /etc/audit/audit.rules
    create: true
  when:
    - audit_arch is defined and audit_arch == 'b64'
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_dac_modification_lremovexattr
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - reboot_required
    - PCI-DSS-Req-10.5.5
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-CM-6(a)
    - CJIS-5.4.1.1
Group   Record Unauthorized Access Attempts Events to Files (unsuccessful)   Group contains 1 rule

[ref]   At a minimum, the audit system should collect unauthorized file accesses for all users and root. Note that the "-F arch=b32" lines should be present even on a 64 bit system. These commands identify system calls for auditing. Even if the system is 64 bit it can still execute 32 bit system calls. Additionally, these rules can be configured in a number of ways while still achieving the desired effect. An example of this is that the "-S" calls could be split up and placed on separate lines, however, this is less efficient. Add the following to /etc/audit/audit.rules:

-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
    -a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If your system is 64 bit then these lines should be duplicated and the arch=b32 replaced with arch=b64 as follows:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
    -a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Rule   Ensure auditd Collects Unauthorized Access Attempts to Files (unsuccessful)   [ref]

At a minimum the audit system should collect unauthorized file accesses for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following lines to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following lines to /etc/audit/audit.rules file:
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b32 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access
If the system is 64 bit then also add the following lines:
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -F key=access
-a always,exit -F arch=b64 -S creat,open,openat,open_by_handle_at,truncate,ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -F key=access

Warning:  This rule checks for multiple syscalls related to unsuccessful file modification; it was written with DISA STIG in mind. Other policies should use a separate rule for each syscall that needs to be checked. For example:
  • audit_rules_unsuccessful_file_modification_open
  • audit_rules_unsuccessful_file_modification_ftruncate
  • audit_rules_unsuccessful_file_modification_creat
Rationale:

Unsuccessful attempts to access files could be an indicator of malicious activity on a system. Auditing these events could serve as evidence of potential system compromise.

Severity: 
medium
Identifiers and References

References:  5.2.10, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000172, CCI-002884, 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, Req-10.2.4, Req-10.2.1

Remediation Shell script:   (show)



# Perform the remediation of the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do

	# First fix the -EACCES requirement
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F exit=-EACCES -F auid>=1000 -F auid!=unset -k *"
	# Use escaped BRE regex to specify rule group
	GROUP="\(creat\|open\|truncate\)"
	FULL_RULE="-a always,exit -F arch=$ARCH -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EACCES -F auid>=1000 -F auid!=unset -k access"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"

	# Then fix the -EPERM requirement
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F exit=-EPERM -F auid>=1000 -F auid!=unset -k *"
	# No need to change content of $GROUP variable - it's the same as for -EACCES case above
	FULL_RULE="-a always,exit -F arch=$ARCH -S creat -S open -S openat -S open_by_handle_at -S truncate -S ftruncate -F exit=-EPERM -F auid>=1000 -F auid!=unset -k access"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"

done
Group   Record File Deletion Events by User   Group contains 1 rule

[ref]   At a minimum, the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=unset -F key=delete

Rule   Ensure auditd Collects File Deletion Events by User   [ref]

At a minimum the audit system should collect file deletion events for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add the following line to a file with suffix .rules in the directory /etc/audit/rules.d, setting ARCH to either b32 or b64 as appropriate for your system:

-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename,renameat -F auid>=1000 -F auid!=unset -F key=delete
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add the following line to /etc/audit/audit.rules file, setting ARCH to either b32 or b64 as appropriate for your system:
-a always,exit -F arch=ARCH -S rmdir,unlink,unlinkat,rename -S renameat -F auid>=1000 -F auid!=unset -F key=delete

Warning:  This rule checks for multiple syscalls related to file deletion; it was written with DISA STIG in mind. Other policies should use a separate rule for each syscall that needs to be checked. For example:
  • audit_rules_file_deletion_events_rmdir
  • audit_rules_file_deletion_events_unlink
  • audit_rules_file_deletion_events_unlinkat
Rationale:

Auditing file deletions will create an audit trail for files that are removed from the system. The audit trail could aid in system troubleshooting, as well as, detecting malicious processes that attempt to delete log files to conceal their presence.

Severity: 
medium
Identifiers and References

References:  5.2.14, 1, 11, 12, 13, 14, 15, 16, 19, 2, 3, 4, 5, 6, 7, 8, 9, 5.4.1.1, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, APO12.06, APO13.01, BAI03.05, BAI08.02, DSS01.03, DSS01.04, DSS02.02, DSS02.04, DSS02.07, DSS03.01, DSS03.05, DSS05.02, DSS05.03, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000366, CCI-000172, CCI-002884, 4.2.3.10, 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.3.6.6, 4.3.4.4.7, 4.3.4.5.6, 4.3.4.5.7, 4.3.4.5.8, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 1.13, SR 2.10, SR 2.11, SR 2.12, SR 2.6, SR 2.8, SR 2.9, SR 3.1, SR 3.5, SR 3.8, SR 4.1, SR 4.3, SR 5.1, SR 5.2, SR 5.3, SR 6.1, SR 6.2, SR 7.1, SR 7.6, A.11.2.6, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.13.1.1, A.13.2.1, A.14.1.3, A.14.2.7, A.15.2.1, A.15.2.2, A.16.1.4, A.16.1.5, A.16.1.7, A.6.2.1, A.6.2.2, AU-2(d), AU-12(c), CM-6(a), DE.AE-3, DE.AE-5, DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.AC-3, PR.PT-1, PR.PT-4, RS.AN-1, RS.AN-4, FAU_GEN.1.1.c, Req-10.2.7

Remediation Shell script:   (show)



# Perform the remediation for the syscall rule
# Retrieve hardware architecture of the underlying system
[ "$(getconf LONG_BIT)" = "32" ] && RULE_ARCHS=("b32") || RULE_ARCHS=("b32" "b64")

for ARCH in "${RULE_ARCHS[@]}"
do
	PATTERN="-a always,exit -F arch=$ARCH -S .* -F auid>=1000 -F auid!=unset -k *"
	# Use escaped BRE regex to specify rule group
	GROUP="\(rmdir\|unlink\|rename\)"
	FULL_RULE="-a always,exit -F arch=$ARCH -S rmdir -S unlink -S unlinkat -S rename -S renameat -F auid>=1000 -F auid!=unset -k delete"
	# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
	fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
	fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
done
Group   Record Information on the Use of Privileged Commands   Group contains 19 rules

[ref]   At a minimum, the audit system should collect the execution of privileged commands for all users and root.

Rule   Ensure auditd Collects Information on the Use of Privileged Commands - passwd   [ref]

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threast.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity: 
medium
Identifiers and References

References:  1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000135, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.PT-1, FAU_GEN.1.1.c, SRG-OS-000042-GPOS-00020, SRG-OS-000392-GPOS-00172, SRG-OS-000471-GPOS-00215, SRG-OS-000471-VMM-001910

Remediation Shell script:   (show)



PATTERN="-a always,exit -F path=/usr/bin/passwd\\s\\+.*"
GROUP="privileged"
# Although the fix doesn't use ARCH, we reset it because it could have been set by some other remediation
ARCH=""
FULL_RULE="-a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Search /etc/audit/rules.d for audit rule entries
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: ^.*path=/usr/bin/passwd.*$
    patterns: '*.rules'
  register: find_passwd
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_passwd
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_passwd.matched is defined and find_passwd.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_passwd
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_passwd.files | map(attribute=''path'') | list | first }}'
  when:
    - find_passwd.matched is defined and find_passwd.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_passwd
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Inserts/replaces the passwd rule in rules.d
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset
      -F key=privileged
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_passwd
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Inserts/replaces the passwd rule in audit.rules
  lineinfile:
    path: /etc/audit/audit.rules
    line: -a always,exit -F path=/usr/bin/passwd -F perm=x -F auid>=1000 -F auid!=unset
      -F key=privileged
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_passwd
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

Rule   Ensure auditd Collects Information on the Use of Privileged Commands - sudo   [ref]

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threast.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity: 
medium
Identifiers and References

References:  1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000135, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2, AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.PT-1, FAU_GEN.1.1.c, SRG-OS-000042-GPOS-00020, SRG-OS-000392-GPOS-00172, SRG-OS-000471-GPOS-00215, SRG-OS-000471-VMM-001910

Remediation Shell script:   (show)



PATTERN="-a always,exit -F path=/usr/bin/sudo\\s\\+.*"
GROUP="privileged"
# Although the fix doesn't use ARCH, we reset it because it could have been set by some other remediation
ARCH=""
FULL_RULE="-a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Search /etc/audit/rules.d for audit rule entries
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: ^.*path=/usr/bin/sudo.*$
    patterns: '*.rules'
  register: find_sudo
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_sudo
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_sudo.matched is defined and find_sudo.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_sudo
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_sudo.files | map(attribute=''path'') | list | first }}'
  when:
    - find_sudo.matched is defined and find_sudo.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_sudo
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Inserts/replaces the sudo rule in rules.d
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset
      -F key=privileged
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_sudo
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Inserts/replaces the sudo rule in audit.rules
  lineinfile:
    path: /etc/audit/audit.rules
    line: -a always,exit -F path=/usr/bin/sudo -F perm=x -F auid>=1000 -F auid!=unset
      -F key=privileged
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_sudo
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

Rule   Ensure auditd Collects Information on the Use of Privileged Commands - usernetctl   [ref]

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/usernetctl -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/usernetctl -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threast.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity: 
medium
Identifiers and References

References:  CCI-000172, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), FAU_GEN.1.1.c, SRG-OS-000471-VMM-001910

Remediation Shell script:   (show)



PATTERN="-a always,exit -F path=/usr/sbin/usernetctl\\s\\+.*"
GROUP="privileged"
# Although the fix doesn't use ARCH, we reset it because it could have been set by some other remediation
ARCH=""
FULL_RULE="-a always,exit -F path=/usr/sbin/usernetctl -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Search /etc/audit/rules.d for audit rule entries
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: ^.*path=/usr/sbin/usernetctl.*$
    patterns: '*.rules'
  register: find_usernetctl
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_usernetctl
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_usernetctl.matched is defined and find_usernetctl.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_usernetctl
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_usernetctl.files | map(attribute=''path'') | list | first }}'
  when:
    - find_usernetctl.matched is defined and find_usernetctl.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_usernetctl
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Inserts/replaces the usernetctl rule in rules.d
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F path=/usr/sbin/usernetctl -F perm=x -F auid>=1000 -F auid!=unset
      -F key=privileged
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_usernetctl
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Inserts/replaces the usernetctl rule in audit.rules
  lineinfile:
    path: /etc/audit/audit.rules
    line: -a always,exit -F path=/usr/sbin/usernetctl -F perm=x -F auid>=1000 -F auid!=unset
      -F key=privileged
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_usernetctl
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-53-AC-2(4)
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

Rule   Ensure auditd Collects Information on the Use of Privileged Commands - postdrop   [ref]

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/sbin/postdrop -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/sbin/postdrop -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threast.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity: 
medium
Identifiers and References

References:  1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000135, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2, AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.CM-1, DE.CM-3, DE.CM-7, ID.SC-4, PR.PT-1, SRG-OS-000042-GPOS-00020, SRG-OS-000392-GPOS-00172, SRG-OS-000471-GPOS-00215, SRG-OS-000471-VMM-001910

Remediation Shell script:   (show)



PATTERN="-a always,exit -F path=/usr/sbin/postdrop\\s\\+.*"
GROUP="privileged"
# Although the fix doesn't use ARCH, we reset it because it could have been set by some other remediation
ARCH=""
FULL_RULE="-a always,exit -F path=/usr/sbin/postdrop -F perm=x -F auid>=1000 -F auid!=unset -F key=privileged"
# Perform the remediation for both possible tools: 'auditctl' and 'augenrules'
# Function to fix syscall audit rule for given system call. It is
# based on example audit syscall rule definitions as outlined in
# /usr/share/doc/audit-2.3.7/stig.rules file provided with the audit
# package. It will combine multiple system calls belonging to the same
# syscall group into one audit rule (rather than to create audit rule per
# different system call) to avoid audit infrastructure performance penalty
# in the case of 'one-audit-rule-definition-per-one-system-call'. See:
#
#   https://www.redhat.com/archives/linux-audit/2014-November/msg00009.html
#
# for further details.
#
# Expects five arguments (each of them is required) in the form of:
# * audit tool				tool used to load audit rules,
# 					either 'auditctl', or 'augenrules
# * audit rules' pattern		audit rule skeleton for same syscall
# * syscall group			greatest common string this rule shares
# 					with other rules from the same group
# * architecture			architecture this rule is intended for
# * full form of new rule to add	expected full form of audit rule as to be
# 					added into audit.rules file
#
# Note: The 2-th up to 4-th arguments are used to determine how many existing
# audit rules will be inspected for resemblance with the new audit rule
# (5-th argument) the function is going to add. The rule's similarity check
# is performed to optimize audit.rules definition (merge syscalls of the same
# group into one rule) to avoid the "single-syscall-per-audit-rule" performance
# penalty.
#
# Example call:
#
#	See e.g. 'audit_rules_file_deletion_events.sh' remediation script
#
function fix_audit_syscall_rule {

# Load function arguments into local variables
local tool="$1"
local pattern="$2"
local group="$3"
local arch="$4"
local full_rule="$5"

# Check sanity of the input
if [ $# -ne "5" ]
then
	echo "Usage: fix_audit_syscall_rule 'tool' 'pattern' 'group' 'arch' 'full rule'"
	echo "Aborting."
	exit 1
fi

# Create a list of audit *.rules files that should be inspected for presence and correctness
# of a particular audit rule. The scheme is as follows:
# 
# -----------------------------------------------------------------------------------------
#  Tool used to load audit rules | Rule already defined  |  Audit rules file to inspect    |
# -----------------------------------------------------------------------------------------
#        auditctl                |     Doesn't matter    |  /etc/audit/audit.rules         |
# -----------------------------------------------------------------------------------------
#        augenrules              |          Yes          |  /etc/audit/rules.d/*.rules     |
#        augenrules              |          No           |  /etc/audit/rules.d/$key.rules  |
# -----------------------------------------------------------------------------------------
#
declare -a files_to_inspect

retval=0

# First check sanity of the specified audit tool
if [ "$tool" != 'auditctl' ] && [ "$tool" != 'augenrules' ]
then
	echo "Unknown audit rules loading tool: $1. Aborting."
	echo "Use either 'auditctl' or 'augenrules'!"
	return 1
# If audit tool is 'auditctl', then add '/etc/audit/audit.rules'
# file to the list of files to be inspected
elif [ "$tool" == 'auditctl' ]
then
	files_to_inspect+=('/etc/audit/audit.rules' )
# If audit tool is 'augenrules', then check if the audit rule is defined
# If rule is defined, add '/etc/audit/rules.d/*.rules' to the list for inspection
# If rule isn't defined yet, add '/etc/audit/rules.d/$key.rules' to the list for inspection
elif [ "$tool" == 'augenrules' ]
then
	# Extract audit $key from audit rule so we can use it later
	key=$(expr "$full_rule" : '.*-k[[:space:]]\([^[:space:]]\+\)' '|' "$full_rule" : '.*-F[[:space:]]key=\([^[:space:]]\+\)')
	readarray -t matches < <(sed -s -n -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d;F" /etc/audit/rules.d/*.rules)
	if [ $? -ne 0 ]
	then
		retval=1
	fi
	for match in "${matches[@]}"
	do
		files_to_inspect+=("${match}")
	done
	# Case when particular rule isn't defined in /etc/audit/rules.d/*.rules yet
	if [ ${#files_to_inspect[@]} -eq "0" ]
	then
		file_to_inspect="/etc/audit/rules.d/$key.rules"
		files_to_inspect=("$file_to_inspect")
		if [ ! -e "$file_to_inspect" ]
		then
			touch "$file_to_inspect"
			chmod 0640 "$file_to_inspect"
		fi
	fi
fi

#
# Indicator that we want to append $full_rule into $audit_file by default
local append_expected_rule=0

for audit_file in "${files_to_inspect[@]}"
do
	# Filter existing $audit_file rules' definitions to select those that:
	# * follow the rule pattern, and
	# * meet the hardware architecture requirement, and
	# * are current syscall group specific
	readarray -t existing_rules < <(sed -e "\;${pattern};!d" -e "/${arch}/!d" -e "/${group}/!d"  "$audit_file")
	if [ $? -ne 0 ]
	then
		retval=1
	fi

	# Process rules found case-by-case
	for rule in "${existing_rules[@]}"
	do
		# Found rule is for same arch & key, but differs (e.g. in count of -S arguments)
		if [ "${rule}" != "${full_rule}" ]
		then
			# If so, isolate just '(-S \w)+' substring of that rule
			rule_syscalls=$(echo "$rule" | grep -o -P '(-S \w+ )+')
			# Check if list of '-S syscall' arguments of that rule is subset
			# of '-S syscall' list of expected $full_rule
			if grep -q -- "$rule_syscalls" <<< "$full_rule"
			then
				# Rule is covered (i.e. the list of -S syscalls for this rule is
				# subset of -S syscalls of $full_rule => existing rule can be deleted
				# Thus delete the rule from audit.rules & our array
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi
				existing_rules=("${existing_rules[@]//$rule/}")
			else
				# Rule isn't covered by $full_rule - it besides -S syscall arguments
				# for this group contains also -S syscall arguments for other syscall
				# group. Example: '-S lchown -S fchmod -S fchownat' => group='chown'
				# since 'lchown' & 'fchownat' share 'chown' substring
				# Therefore:
				# * 1) delete the original rule from audit.rules
				# (original '-S lchown -S fchmod -S fchownat' rule would be deleted)
				# * 2) delete the -S syscall arguments for this syscall group, but
				# keep those not belonging to this syscall group
				# (original '-S lchown -S fchmod -S fchownat' would become '-S fchmod'
				# * 3) append the modified (filtered) rule again into audit.rules
				# if the same rule not already present
				#
				# 1) Delete the original rule
				sed -i -e "\;${rule};d" "$audit_file"
				if [ $? -ne 0 ]
				then
					retval=1
				fi

				# 2) Delete syscalls for this group, but keep those from other groups
				# Convert current rule syscall's string into array splitting by '-S' delimiter
				IFS_BKP="$IFS"
				IFS=$'-S'
				read -a rule_syscalls_as_array <<< "$rule_syscalls"
				# Reset IFS back to default
				IFS="$IFS_BKP"
				# Splitting by "-S" can't be replaced by the readarray functionality easily

				# Declare new empty string to hold '-S syscall' arguments from other groups
				new_syscalls_for_rule=''
				# Walk through existing '-S syscall' arguments
				for syscall_arg in "${rule_syscalls_as_array[@]}"
				do
					# Skip empty $syscall_arg values
					if [ "$syscall_arg" == '' ]
					then
						continue
					fi
					# If the '-S syscall' doesn't belong to current group add it to the new list
					# (together with adding '-S' delimiter back for each of such item found)
					if grep -q -v -- "$group" <<< "$syscall_arg"
					then
						new_syscalls_for_rule="$new_syscalls_for_rule -S $syscall_arg"
					fi
				done
				# Replace original '-S syscall' list with the new one for this rule
				updated_rule=${rule//$rule_syscalls/$new_syscalls_for_rule}
				# Squeeze repeated whitespace characters in rule definition (if any) into one
				updated_rule=$(echo "$updated_rule" | tr -s '[:space:]')
				# 3) Append the modified / filtered rule again into audit.rules
				#    (but only in case it's not present yet to prevent duplicate definitions)
				if ! grep -q -- "$updated_rule" "$audit_file"
				then
					echo "$updated_rule" >> "$audit_file"
				fi
			fi
		else
			# $audit_file already contains the expected rule form for this
			# architecture & key => don't insert it second time
			append_expected_rule=1
		fi
	done

	# We deleted all rules that were subset of the expected one for this arch & key.
	# Also isolated rules containing system calls not from this system calls group.
	# Now append the expected rule if it's not present in $audit_file yet
	if [[ ${append_expected_rule} -eq "0" ]]
	then
		echo "$full_rule" >> "$audit_file"
	fi
done

return $retval

}
fix_audit_syscall_rule "auditctl" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
fix_audit_syscall_rule "augenrules" "$PATTERN" "$GROUP" "$ARCH" "$FULL_RULE"
Remediation Ansible snippet:   (show)

Complexity:low
Disruption:low
Strategy:restrict
- name: Search /etc/audit/rules.d for audit rule entries
  find:
    paths: /etc/audit/rules.d
    recurse: false
    contains: ^.*path=/usr/sbin/postdrop.*$
    patterns: '*.rules'
  register: find_postdrop
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_postdrop
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Use /etc/audit/rules.d/privileged.rules as the recipient for the rule
  set_fact:
    all_files:
      - /etc/audit/rules.d/privileged.rules
  when:
    - find_postdrop.matched is defined and find_postdrop.matched == 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_postdrop
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Use matched file as the recipient for the rule
  set_fact:
    all_files:
      - '{{ find_postdrop.files | map(attribute=''path'') | list | first }}'
  when:
    - find_postdrop.matched is defined and find_postdrop.matched > 0
    - ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_postdrop
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Inserts/replaces the postdrop rule in rules.d
  lineinfile:
    path: '{{ all_files[0] }}'
    line: -a always,exit -F path=/usr/sbin/postdrop -F perm=x -F auid>=1000 -F auid!=unset
      -F key=privileged
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_postdrop
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

- name: Inserts/replaces the postdrop rule in audit.rules
  lineinfile:
    path: /etc/audit/audit.rules
    line: -a always,exit -F path=/usr/sbin/postdrop -F perm=x -F auid>=1000 -F auid!=unset
      -F key=privileged
    create: true
  when: ansible_virtualization_role != "guest" or ansible_virtualization_type != "docker"
  tags:
    - audit_rules_privileged_commands_postdrop
    - medium_severity
    - restrict_strategy
    - low_complexity
    - low_disruption
    - no_reboot_needed
    - NIST-800-171-3.1.7
    - NIST-800-53-AU-2(d)
    - NIST-800-53-AU-12(c)
    - NIST-800-53-AC-6(9)
    - NIST-800-53-CM-6(a)

Rule   Ensure auditd Collects Information on the Use of Privileged Commands - chsh   [ref]

At a minimum, the audit system should collect the execution of privileged commands for all users and root. If the auditd daemon is configured to use the augenrules program to read audit rules during daemon startup (the default), add a line of the following form to a file with suffix .rules in the directory /etc/audit/rules.d:

-a always,exit -F path=/usr/bin/chsh -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes
If the auditd daemon is configured to use the auditctl utility to read audit rules during daemon startup, add a line of the following form to /etc/audit/audit.rules:
-a always,exit -F path=/usr/bin/chsh -F perm=x -F auid>=1000 -F auid!=unset -F key=special-config-changes

Rationale:

Misuse of privileged functions, either intentionally or unintentionally by authorized users, or by unauthorized external entities that have compromised system accounts, is a serious and ongoing concern and can have significant adverse impacts on organizations. Auditing the use of privileged functions is one way to detect such misuse and identify the risk from insider and advanced persistent threast.

Privileged programs are subject to escalation-of-privilege attacks, which attempt to subvert their normal role of providing some necessary but limited capability. As such, motivation exists to monitor these programs for unusual activity.

Severity: 
medium
Identifiers and References

References:  1, 12, 13, 14, 15, 16, 2, 3, 5, 6, 7, 8, 9, APO10.01, APO10.03, APO10.04, APO10.05, APO11.04, BAI03.05, DSS01.03, DSS03.05, DSS05.02, DSS05.04, DSS05.05, DSS05.07, MEA01.01, MEA01.02, MEA01.03, MEA01.04, MEA01.05, MEA02.01, 3.1.7, CCI-000135, CCI-000172, CCI-002884, 164.308(a)(1)(ii)(D), 164.308(a)(3)(ii)(A), 164.308(a)(5)(ii)(C), 164.312(a)(2)(i), 164.312(b), 164.312(d), 164.312(e), 4.3.2.6.7, 4.3.3.3.9, 4.3.3.5.8, 4.3.4.4.7, 4.4.2.1, 4.4.2.2, 4.4.2.4, SR 2.10, SR 2.11, SR 2.12, SR 2.8, SR 2.9, SR 6.1, SR 6.2, A.12.4.1, A.12.4.2, A.12.4.3, A.12.4.4, A.12.7.1, A.14.2.7, A.15.2.1, A.15.2.2, AC-2(4), AU-2(d), AU-12(c), AC-6(9), CM-6(a), DE.CM-1, DE.CM-3,